mirror of
https://github.com/achlipala/frap.git
synced 2024-11-10 00:07:51 +00:00
SessionTypes: simplified and proved a key invariant
This commit is contained in:
parent
91fc06122d
commit
b9893a0e92
2 changed files with 120 additions and 142 deletions
|
@ -335,7 +335,7 @@ Definition add2_once (input output : channel) : proc :=
|
|||
* of the first process as the fancy *implementation* and the second process as
|
||||
* the simpler *specification*. *)
|
||||
Inductive R_add2 : proc -> proc -> Prop :=
|
||||
| Initial : forall input output,
|
||||
| Starting : forall input output,
|
||||
input <> output
|
||||
-> R_add2
|
||||
(New[input;output](ch); ??input(n : nat); !!ch(n + 1); Done
|
||||
|
|
258
SessionTypes.v
258
SessionTypes.v
|
@ -14,14 +14,11 @@ Set Asymmetric Patterns.
|
|||
Inductive type :=
|
||||
| TSend (ch : channel) (A : Set) (t : type)
|
||||
| TRecv (ch : channel) (A : Set) (t : type)
|
||||
| TPar (t1 t2 : type)
|
||||
| TDup (t : type)
|
||||
| TDone
|
||||
|
||||
| InternalChoice (t1 t2 : type)
|
||||
| ExternalChoice (t1 t2 : type).
|
||||
|
||||
Infix "||" := Par : st_scope.
|
||||
Delimit Scope st_scope with st.
|
||||
Bind Scope st_scope with type.
|
||||
Notation "!!! ch ( A ) ; k" := (TSend ch A k%st) (right associativity, at level 45, ch at level 0) : st_scope.
|
||||
|
@ -29,116 +26,13 @@ Notation "??? ch ( A ) ; k" := (TRecv ch A k%st) (right associativity, at level
|
|||
Infix "|?|" := InternalChoice (at level 40) : st_scope.
|
||||
Infix "?|?" := ExternalChoice (at level 40) : st_scope.
|
||||
|
||||
|
||||
Inductive ignoresChannel (ch : channel) : type -> Prop :=
|
||||
| IcSend : forall ch' A t,
|
||||
ch' <> ch
|
||||
-> ignoresChannel ch t
|
||||
-> ignoresChannel ch (TSend ch' A t)
|
||||
| IcRecv : forall ch' A t,
|
||||
ch' <> ch
|
||||
-> ignoresChannel ch t
|
||||
-> ignoresChannel ch (TRecv ch' A t)
|
||||
| IcPar : forall t1 t2,
|
||||
ignoresChannel ch t1
|
||||
-> ignoresChannel ch t2
|
||||
-> ignoresChannel ch (TPar t1 t2)
|
||||
| IcDup : forall t,
|
||||
ignoresChannel ch t
|
||||
-> ignoresChannel ch (TDup t)
|
||||
| IcDone :
|
||||
ignoresChannel ch TDone
|
||||
|
||||
| IcInternalChoice : forall t1 t2,
|
||||
ignoresChannel ch t1
|
||||
-> ignoresChannel ch t2
|
||||
-> ignoresChannel ch (InternalChoice t1 t2)
|
||||
| IcExternalChoice : forall t1 t2,
|
||||
ignoresChannel ch t1
|
||||
-> ignoresChannel ch t2
|
||||
-> ignoresChannel ch (ExternalChoice t1 t2).
|
||||
|
||||
Inductive hideChannel (ch : channel) : type -> type -> Prop :=
|
||||
| HideIgnored : forall t,
|
||||
ignoresChannel ch t
|
||||
-> hideChannel ch t t
|
||||
|
||||
| HideExtSend1 : forall ch' A t1 t2 t',
|
||||
ch' <> ch
|
||||
-> ignoresChannel ch' t2
|
||||
-> hideChannel ch (TPar t1 t2) t'
|
||||
-> hideChannel ch (TPar (TSend ch' A t1) t2) (TSend ch' A t')
|
||||
| HideExtRecv1 : forall ch' A t1 t2 t',
|
||||
ch' <> ch
|
||||
-> ignoresChannel ch' t2
|
||||
-> hideChannel ch (TPar t1 t2) t'
|
||||
-> hideChannel ch (TPar (TRecv ch' A t1) t2) (TRecv ch' A t')
|
||||
| HideExtSend2 : forall ch' A t1 t2 t',
|
||||
ch' <> ch
|
||||
-> ignoresChannel ch' t2
|
||||
-> hideChannel ch (TPar t1 t2) t'
|
||||
-> hideChannel ch (TPar t1 (TSend ch' A t2)) (TSend ch' A t')
|
||||
| HideExtRecv2 : forall ch' A t1 t2 t',
|
||||
ch' <> ch
|
||||
-> ignoresChannel ch' t2
|
||||
-> hideChannel ch (TPar t1 t2) t'
|
||||
-> hideChannel ch (TPar t1 (TRecv ch' A t2)) (TRecv ch' A t')
|
||||
|
||||
| HideRendezvous1 : forall A t1 t2 t',
|
||||
hideChannel ch (TPar t1 t2) t'
|
||||
-> hideChannel ch (TPar (TSend ch A t1) (TRecv ch A t2)) t'
|
||||
| HideRendezvous2 : forall A t1 t2 t',
|
||||
hideChannel ch (TPar t1 t2) t'
|
||||
-> hideChannel ch (TPar (TRecv ch A t1) (TSend ch A t2)) t'.
|
||||
|
||||
Fixpoint shrink (t : type) : type :=
|
||||
match t with
|
||||
| TSend ch A t1 => TSend ch A (shrink t1)
|
||||
| TRecv ch A t1 => TRecv ch A (shrink t1)
|
||||
| TPar t1 t2 =>
|
||||
let t1' := shrink t1 in
|
||||
let t2' := shrink t2 in
|
||||
match t1', t2' with
|
||||
| TDone, _ => t2'
|
||||
| _, TDone => t1'
|
||||
| _, _ => TPar t1' t2'
|
||||
end
|
||||
| TDup t1 =>
|
||||
let t1' := shrink t1 in
|
||||
match t1' with
|
||||
| TDone => TDone
|
||||
| _ => TDup t1'
|
||||
end
|
||||
| TDone => TDone
|
||||
|
||||
| InternalChoice t1 t2 => InternalChoice (shrink t1) (shrink t2)
|
||||
| ExternalChoice t1 t2 => ExternalChoice (shrink t1) (shrink t2)
|
||||
end.
|
||||
|
||||
Inductive hasty : proc -> type -> Prop :=
|
||||
| HtNewChannel : forall notThese k t tc tcs,
|
||||
(forall ch, ~In ch notThese -> hasty (k ch) (t ch))
|
||||
-> (forall ch, ~In ch notThese -> hideChannel ch (t ch) tc)
|
||||
-> shrink tc = tcs
|
||||
-> hasty (NewChannel notThese k) tcs
|
||||
| HtBlockChannel : forall ch pr t tc tcs,
|
||||
hasty pr t
|
||||
-> hideChannel ch t tc
|
||||
-> shrink tc = tcs
|
||||
-> hasty (BlockChannel ch pr) tcs
|
||||
| HtSend : forall ch (A : Set) (v : A) k t,
|
||||
hasty k t
|
||||
-> hasty (Send ch v k) (TSend ch A t)
|
||||
| HtRecv : forall ch (A : Set) (k : A -> _) t,
|
||||
(forall v, hasty (k v) t)
|
||||
-> hasty (Recv ch k) (TRecv ch A t)
|
||||
| HtPar : forall pr1 pr2 t1 t2,
|
||||
hasty pr1 t1
|
||||
-> hasty pr2 t2
|
||||
-> hasty (Par pr1 pr2) (TPar t1 t2)
|
||||
| HtDup : forall pr t,
|
||||
hasty pr t
|
||||
-> hasty (Dup pr) (TDup t)
|
||||
| HtDone :
|
||||
hasty Done TDone
|
||||
|
||||
|
@ -162,37 +56,10 @@ Definition addN (k : nat) (input output : channel) : proc :=
|
|||
!!output(n + k);
|
||||
Done.
|
||||
|
||||
Ltac hasty := simplify; repeat (constructor; simplify).
|
||||
|
||||
Theorem addN_typed : forall k input output,
|
||||
hasty (addN k input output) (???input(nat); !!!output(nat); TDone).
|
||||
Proof.
|
||||
simplify.
|
||||
repeat (constructor; simplify).
|
||||
Qed.
|
||||
|
||||
Definition add2 (input output : channel) : proc :=
|
||||
Dup (New[input;output](intermediate);
|
||||
addN 1 input intermediate
|
||||
|| addN 1 intermediate output).
|
||||
|
||||
Ltac hide1 := apply HideRendezvous1 || apply HideRendezvous2
|
||||
|| (eapply HideIgnored; repeat constructor; equality)
|
||||
|| (eapply HideExtSend1; [ equality | repeat constructor; equality | ])
|
||||
|| (eapply HideExtRecv1; [ equality | repeat constructor; equality | ])
|
||||
|| (eapply HideExtSend2; [ equality | repeat constructor; equality | ])
|
||||
|| (eapply HideExtRecv2; [ equality | repeat constructor; equality | ]).
|
||||
|
||||
Ltac hide := repeat hide1.
|
||||
|
||||
Ltac hasty1 :=
|
||||
match goal with
|
||||
| [ |- hasty _ _ ] => econstructor; simplify
|
||||
end.
|
||||
|
||||
Ltac hasty := simplify; repeat hasty1; simplify; hide; try equality.
|
||||
|
||||
Theorem add2_typed : forall input output,
|
||||
input <> output
|
||||
-> hasty (add2 input output) (TDup (???input(nat); !!!output(nat); TDone)).
|
||||
Proof.
|
||||
hasty.
|
||||
Qed.
|
||||
|
@ -204,8 +71,6 @@ Fixpoint complement (t : type) : type :=
|
|||
match t with
|
||||
| TSend ch A t1 => TRecv ch A (complement t1)
|
||||
| TRecv ch A t1 => TSend ch A (complement t1)
|
||||
| TPar t1 t2 => TPar (complement t1) (complement t2)
|
||||
| TDup t1 => TDup (complement t1)
|
||||
| TDone => TDone
|
||||
|
||||
| InternalChoice t1 t2 => ExternalChoice (complement t1) (complement t2)
|
||||
|
@ -213,13 +78,126 @@ Fixpoint complement (t : type) : type :=
|
|||
end.
|
||||
|
||||
Definition add2_client (input output : channel) : proc :=
|
||||
Dup (!!input(42);
|
||||
!!input(42);
|
||||
??output(_ : nat);
|
||||
Done).
|
||||
Done.
|
||||
|
||||
Theorem add2_client_typed : forall input output,
|
||||
input <> output
|
||||
-> hasty (add2_client input output) (complement (TDup (???input(nat); !!!output(nat); TDone))).
|
||||
-> hasty (add2_client input output) (complement (???input(nat); !!!output(nat); TDone)).
|
||||
Proof.
|
||||
hasty.
|
||||
Qed.
|
||||
|
||||
|
||||
(** * Parallel execution preserves the existence of complementary session types. *)
|
||||
|
||||
Definition trsys_of pr := {|
|
||||
Initial := {pr};
|
||||
Step := lstepSilent
|
||||
|}.
|
||||
(* Note: here we force silent steps, so that all channel communication is
|
||||
* internal. *)
|
||||
|
||||
Hint Constructors hasty.
|
||||
|
||||
Lemma hasty_not_NewChannel : forall chs pr t,
|
||||
hasty (NewChannel chs pr) t
|
||||
-> False.
|
||||
Proof.
|
||||
induct 1; auto.
|
||||
Qed.
|
||||
|
||||
Lemma hasty_not_BlockChannel : forall ch pr t,
|
||||
hasty (BlockChannel ch pr) t
|
||||
-> False.
|
||||
Proof.
|
||||
induct 1; auto.
|
||||
Qed.
|
||||
|
||||
Lemma hasty_not_Dup : forall pr t,
|
||||
hasty (Dup pr) t
|
||||
-> False.
|
||||
Proof.
|
||||
induct 1; auto.
|
||||
Qed.
|
||||
|
||||
Lemma hasty_not_Par : forall pr1 pr2 t,
|
||||
hasty (pr1 || pr2) t
|
||||
-> False.
|
||||
Proof.
|
||||
induct 1; auto.
|
||||
Qed.
|
||||
|
||||
Hint Immediate hasty_not_NewChannel hasty_not_BlockChannel hasty_not_Dup hasty_not_Par.
|
||||
|
||||
Lemma input_typed : forall pr ch A v pr',
|
||||
lstep pr (Input {| Channel := ch; TypeOf := A; Value := v |}) pr'
|
||||
-> forall t, hasty pr t
|
||||
-> exists k, pr = Recv ch k /\ pr' = k v.
|
||||
Proof.
|
||||
induct 1; simplify; try solve [ exfalso; eauto ].
|
||||
induct H; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma output_typed : forall pr ch A v pr',
|
||||
lstep pr (Output {| Channel := ch; TypeOf := A; Value := v |}) pr'
|
||||
-> forall t, hasty pr t
|
||||
-> exists k, pr = Send ch v k /\ pr' = k.
|
||||
Proof.
|
||||
induct 1; simplify; try solve [ exfalso; eauto ].
|
||||
induct H; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma complementarity_rendezvous : forall ch (A : Set) (k1 : A -> _) t,
|
||||
hasty (Recv ch k1) t
|
||||
-> forall (v : A) k2, hasty (Send ch v k2) (complement t)
|
||||
-> exists t', hasty (k1 v) t' /\ hasty k2 (complement t').
|
||||
Proof.
|
||||
induct 1; invert 1; simplify; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma complement_inverse : forall t,
|
||||
t = complement (complement t).
|
||||
Proof.
|
||||
induct t; simplify; equality.
|
||||
Qed.
|
||||
|
||||
Lemma complementarity_forever : forall pr1 pr2 t,
|
||||
hasty pr1 t
|
||||
-> hasty pr2 (complement t)
|
||||
-> invariantFor (trsys_of (pr1 || pr2))
|
||||
(fun pr => exists pr1' pr2' t',
|
||||
pr = pr1' || pr2'
|
||||
/\ hasty pr1' t'
|
||||
/\ hasty pr2' (complement t')).
|
||||
Proof.
|
||||
simplify.
|
||||
apply invariant_induction; simplify.
|
||||
|
||||
propositional; subst.
|
||||
eauto 6.
|
||||
|
||||
clear pr1 pr2 t H H0.
|
||||
first_order; subst.
|
||||
invert H2.
|
||||
|
||||
invert H6; try solve [ exfalso; eauto ].
|
||||
|
||||
invert H6; try solve [ exfalso; eauto ].
|
||||
|
||||
eapply input_typed in H4; eauto.
|
||||
eapply output_typed in H5; eauto.
|
||||
first_order; subst.
|
||||
eapply complementarity_rendezvous in H0; eauto.
|
||||
first_order.
|
||||
|
||||
eapply input_typed in H5; eauto.
|
||||
eapply output_typed in H4; eauto.
|
||||
first_order; subst.
|
||||
rewrite complement_inverse in H0.
|
||||
eapply complementarity_rendezvous in H1; eauto.
|
||||
first_order.
|
||||
rewrite complement_inverse in H.
|
||||
first_order.
|
||||
Qed.
|
||||
|
|
Loading…
Reference in a new issue