mirror of
https://github.com/achlipala/frap.git
synced 2024-11-12 17:17:50 +00:00
DataAbstraction: range sets
This commit is contained in:
parent
f14ed26afa
commit
cf4d06c222
1 changed files with 328 additions and 0 deletions
|
@ -1226,3 +1226,331 @@ Compute NatDuplicateFinder.noDuplicates [1].
|
|||
Compute NatDuplicateFinder.noDuplicates [1; 2].
|
||||
Compute NatDuplicateFinder.noDuplicates [1; 2; 3].
|
||||
Compute NatDuplicateFinder.noDuplicates [1; 2; 1; 3].
|
||||
|
||||
Module NatRangeSet <: FINITE_SET with Definition key := nat.
|
||||
Definition key := nat.
|
||||
|
||||
Inductive rangeSet : Set :=
|
||||
| Empty
|
||||
| Range (from to : nat)
|
||||
| AdHoc (s : NatSet.t).
|
||||
|
||||
Definition t := rangeSet.
|
||||
|
||||
Fixpoint fromRange' (from to : nat) : NatSet.t :=
|
||||
match to with
|
||||
| 0 => NatSet.add NatSet.empty 0
|
||||
| S to' => if NatWithEquality.equal to from
|
||||
then NatSet.add NatSet.empty to
|
||||
else NatSet.add (fromRange' from to') (S to')
|
||||
end.
|
||||
|
||||
Definition fromRange (from to : nat) : NatSet.t :=
|
||||
if Compare_dec.leb from to
|
||||
then fromRange' from to
|
||||
else NatSet.empty.
|
||||
|
||||
Definition empty : t := Empty.
|
||||
Definition add (s : t) (k : key) : t :=
|
||||
match s with
|
||||
| Empty => Range k k
|
||||
| Range from to =>
|
||||
if Compare_dec.leb from k && Compare_dec.leb k to
|
||||
then s
|
||||
else if NatWithEquality.equal k (from - 1) && Compare_dec.leb from to
|
||||
then Range k to
|
||||
else if NatWithEquality.equal k (to + 1) && Compare_dec.leb from to
|
||||
then Range from k
|
||||
else AdHoc (NatSet.add (fromRange from to) k)
|
||||
| AdHoc s' => AdHoc (NatSet.add s' k)
|
||||
end.
|
||||
|
||||
Definition member (s : t) (k : key) : bool :=
|
||||
match s with
|
||||
| Empty => false
|
||||
| Range from to => Compare_dec.leb from to && Compare_dec.leb from k && Compare_dec.leb k to
|
||||
| AdHoc s' => NatSet.member s' k
|
||||
end.
|
||||
|
||||
Theorem member_empty : forall k, member empty k = false.
|
||||
Proof.
|
||||
simplify.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Lemma member_fromRange' : forall k from to,
|
||||
from <= to
|
||||
-> NatSet.member (fromRange' from to) k = Compare_dec.leb from k && Compare_dec.leb k to.
|
||||
Proof.
|
||||
induct to; simplify.
|
||||
|
||||
cases k; simplify.
|
||||
rewrite Compare_dec.leb_correct by assumption.
|
||||
equality.
|
||||
rewrite Compare_dec.leb_correct by linear_arithmetic.
|
||||
equality.
|
||||
|
||||
cases from; simplify.
|
||||
cases k; simplify.
|
||||
apply IHto.
|
||||
linear_arithmetic.
|
||||
pose proof (NatWithEquality.equal_ok to k).
|
||||
cases (NatWithEquality.equal to k); simplify.
|
||||
rewrite Compare_dec.leb_correct by linear_arithmetic.
|
||||
equality.
|
||||
rewrite IHto by linear_arithmetic.
|
||||
cases to.
|
||||
rewrite Compare_dec.leb_correct_conv by linear_arithmetic.
|
||||
equality.
|
||||
cases (Compare_dec.leb k to).
|
||||
apply Compare_dec.leb_complete in Heq0.
|
||||
rewrite Compare_dec.leb_correct by linear_arithmetic.
|
||||
equality.
|
||||
apply Compare_dec.leb_complete_conv in Heq0.
|
||||
rewrite Compare_dec.leb_correct_conv by linear_arithmetic.
|
||||
equality.
|
||||
|
||||
pose proof (NatWithEquality.equal_ok to from).
|
||||
cases (NatWithEquality.equal to from); simplify.
|
||||
|
||||
cases k; simplify.
|
||||
equality.
|
||||
pose proof (NatWithEquality.equal_ok to k).
|
||||
cases (NatWithEquality.equal to k); simplify.
|
||||
rewrite Compare_dec.leb_correct by linear_arithmetic.
|
||||
rewrite Compare_dec.leb_correct by linear_arithmetic.
|
||||
equality.
|
||||
cases (Compare_dec.leb from k); simplify.
|
||||
apply Compare_dec.leb_complete in Heq1.
|
||||
rewrite Compare_dec.leb_correct_conv by linear_arithmetic.
|
||||
equality.
|
||||
equality.
|
||||
|
||||
cases k; simplify.
|
||||
apply IHto.
|
||||
linear_arithmetic.
|
||||
rewrite IHto by linear_arithmetic.
|
||||
pose proof (NatWithEquality.equal_ok to k).
|
||||
cases (NatWithEquality.equal to k); simplify.
|
||||
rewrite Compare_dec.leb_correct by linear_arithmetic.
|
||||
rewrite Compare_dec.leb_correct by linear_arithmetic.
|
||||
equality.
|
||||
|
||||
cases to.
|
||||
rewrite (Compare_dec.leb_correct_conv 0 k) by linear_arithmetic.
|
||||
equality.
|
||||
cases (Compare_dec.leb k to).
|
||||
apply Compare_dec.leb_complete in Heq1.
|
||||
rewrite (Compare_dec.leb_correct k (S to)) by linear_arithmetic.
|
||||
equality.
|
||||
apply Compare_dec.leb_complete_conv in Heq1.
|
||||
rewrite (Compare_dec.leb_correct_conv (S to) k) by linear_arithmetic.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Theorem member_add_eq : forall k s,
|
||||
member (add s k) k = true.
|
||||
Proof.
|
||||
unfold member, add; simplify.
|
||||
cases s.
|
||||
|
||||
SearchAbout Compare_dec.leb.
|
||||
rewrite Compare_dec.leb_correct.
|
||||
equality.
|
||||
linear_arithmetic.
|
||||
|
||||
cases (Compare_dec.leb from k); simplify.
|
||||
cases (Compare_dec.leb k to); simplify.
|
||||
rewrite Heq.
|
||||
rewrite Heq0.
|
||||
apply Compare_dec.leb_complete in Heq.
|
||||
apply Compare_dec.leb_complete in Heq0.
|
||||
rewrite Compare_dec.leb_correct by linear_arithmetic.
|
||||
equality.
|
||||
|
||||
pose proof (NatWithEquality.equal_ok k (from - 1)).
|
||||
cases (NatWithEquality.equal k (from - 1)).
|
||||
apply leb_complete in Heq.
|
||||
apply leb_complete_conv in Heq0.
|
||||
linear_arithmetic.
|
||||
simplify.
|
||||
pose proof (NatWithEquality.equal_ok k (to + 1)).
|
||||
cases (NatWithEquality.equal k (to + 1)); simplify.
|
||||
cases (Compare_dec.leb from to).
|
||||
rewrite Heq.
|
||||
rewrite Compare_dec.leb_correct by linear_arithmetic.
|
||||
equality.
|
||||
apply NatSet.member_add_eq.
|
||||
pose proof (NatWithEquality.equal_ok k k).
|
||||
cases (NatWithEquality.equal k k); simplify.
|
||||
equality.
|
||||
equality.
|
||||
|
||||
pose proof (NatWithEquality.equal_ok k (from - 1)).
|
||||
cases (NatWithEquality.equal k (from - 1)); simplify.
|
||||
cases (Compare_dec.leb from to).
|
||||
apply Compare_dec.leb_complete in Heq1.
|
||||
rewrite Compare_dec.leb_correct by linear_arithmetic.
|
||||
rewrite Compare_dec.leb_correct by linear_arithmetic.
|
||||
equality.
|
||||
pose proof (NatWithEquality.equal_ok k (to + 1)).
|
||||
cases (NatWithEquality.equal k (to + 1)); simplify.
|
||||
pose proof (NatWithEquality.equal_ok k k).
|
||||
cases (NatWithEquality.equal k k); simplify.
|
||||
equality.
|
||||
equality.
|
||||
pose proof (NatWithEquality.equal_ok k k).
|
||||
cases (NatWithEquality.equal k k); simplify.
|
||||
equality.
|
||||
equality.
|
||||
pose proof (NatWithEquality.equal_ok k (to + 1)).
|
||||
cases (NatWithEquality.equal k (to + 1)); simplify.
|
||||
cases (Compare_dec.leb from to).
|
||||
apply Compare_dec.leb_complete in Heq2.
|
||||
apply Compare_dec.leb_complete_conv in Heq.
|
||||
linear_arithmetic.
|
||||
apply NatSet.member_add_eq.
|
||||
pose proof (NatWithEquality.equal_ok k k).
|
||||
cases (NatWithEquality.equal k k); simplify.
|
||||
equality.
|
||||
equality.
|
||||
|
||||
apply NatSet.member_add_eq.
|
||||
Qed.
|
||||
|
||||
Theorem member_add_noteq : forall k1 k2 s,
|
||||
k1 <> k2
|
||||
-> member (add s k1) k2 = member s k2.
|
||||
Proof.
|
||||
simplify.
|
||||
unfold member, add.
|
||||
cases s.
|
||||
|
||||
cases (Compare_dec.leb k1 k2); simplify.
|
||||
rewrite Compare_dec.leb_correct by linear_arithmetic.
|
||||
apply Compare_dec.leb_complete in Heq.
|
||||
rewrite Compare_dec.leb_correct_conv.
|
||||
equality.
|
||||
unfold key in *. (* Tricky step! Coq needs to see that we are really working with numbers. *)
|
||||
linear_arithmetic.
|
||||
rewrite Compare_dec.leb_correct by linear_arithmetic.
|
||||
equality.
|
||||
|
||||
cases (Compare_dec.leb from k1); simplify.
|
||||
cases (Compare_dec.leb k1 to); simplify.
|
||||
equality.
|
||||
|
||||
pose proof (NatWithEquality.equal_ok k1 (from - 1)).
|
||||
cases (NatWithEquality.equal k1 (from - 1)); simplify.
|
||||
apply leb_complete in Heq.
|
||||
apply leb_complete_conv in Heq0.
|
||||
linear_arithmetic.
|
||||
pose proof (NatWithEquality.equal_ok k1 (to + 1)).
|
||||
cases (NatWithEquality.equal k1 (to + 1)); simplify.
|
||||
cases (Compare_dec.leb from to).
|
||||
rewrite H1.
|
||||
cases (Compare_dec.leb from k2); simplify.
|
||||
cases (Compare_dec.leb k2 to).
|
||||
apply Compare_dec.leb_complete in Heq5.
|
||||
apply Compare_dec.leb_complete in Heq3.
|
||||
rewrite Compare_dec.leb_correct by linear_arithmetic.
|
||||
rewrite Compare_dec.leb_correct by linear_arithmetic.
|
||||
equality.
|
||||
apply Compare_dec.leb_complete in Heq3.
|
||||
rewrite Compare_dec.leb_correct by linear_arithmetic.
|
||||
apply Compare_dec.leb_complete_conv in Heq5.
|
||||
unfold key in *.
|
||||
rewrite Compare_dec.leb_correct_conv by linear_arithmetic.
|
||||
equality.
|
||||
rewrite andb_false_r.
|
||||
equality.
|
||||
simplify.
|
||||
pose proof (NatWithEquality.equal_ok k1 k2).
|
||||
cases (NatWithEquality.equal k1 k2); simplify.
|
||||
equality.
|
||||
unfold fromRange.
|
||||
rewrite Heq3.
|
||||
apply NatSet.member_empty.
|
||||
pose proof (NatWithEquality.equal_ok k1 k2).
|
||||
cases (NatWithEquality.equal k1 k2); simplify.
|
||||
equality.
|
||||
unfold fromRange.
|
||||
cases (Compare_dec.leb from to); simplify.
|
||||
apply member_fromRange'.
|
||||
apply Compare_dec.leb_complete.
|
||||
assumption.
|
||||
equality.
|
||||
|
||||
pose proof (NatWithEquality.equal_ok k1 (from - 1)).
|
||||
cases (NatWithEquality.equal k1 (from - 1)); simplify.
|
||||
cases (Compare_dec.leb from to).
|
||||
apply Compare_dec.leb_complete in Heq1.
|
||||
rewrite Compare_dec.leb_correct by linear_arithmetic.
|
||||
f_equal.
|
||||
f_equal.
|
||||
cases (Compare_dec.leb k1 k2).
|
||||
apply Compare_dec.leb_complete in Heq2.
|
||||
apply Compare_dec.leb_complete_conv in Heq.
|
||||
unfold key in *.
|
||||
rewrite Compare_dec.leb_correct by linear_arithmetic.
|
||||
equality.
|
||||
apply Compare_dec.leb_complete_conv in Heq2.
|
||||
apply Compare_dec.leb_complete_conv in Heq.
|
||||
unfold key in *.
|
||||
rewrite Compare_dec.leb_correct_conv by linear_arithmetic.
|
||||
equality.
|
||||
pose proof (NatWithEquality.equal_ok k1 (to + 1)).
|
||||
cases (NatWithEquality.equal k1 (to + 1)); simplify.
|
||||
pose proof (NatWithEquality.equal_ok k1 k2).
|
||||
cases (NatWithEquality.equal k1 k2); simplify.
|
||||
unfold key in *; linear_arithmetic.
|
||||
unfold fromRange.
|
||||
rewrite Heq1.
|
||||
apply NatSet.member_empty.
|
||||
pose proof (NatWithEquality.equal_ok k1 k2).
|
||||
cases (NatWithEquality.equal k1 k2); simplify.
|
||||
equality.
|
||||
unfold fromRange.
|
||||
rewrite Heq1.
|
||||
apply NatSet.member_empty.
|
||||
pose proof (NatWithEquality.equal_ok k1 (to + 1)).
|
||||
cases (NatWithEquality.equal k1 (to + 1)); simplify.
|
||||
cases (Compare_dec.leb from to).
|
||||
rewrite Heq; simplify.
|
||||
apply Compare_dec.leb_complete in Heq2.
|
||||
apply Compare_dec.leb_complete_conv in Heq.
|
||||
linear_arithmetic.
|
||||
rewrite NatSet.member_add_noteq by assumption; simplify.
|
||||
unfold fromRange.
|
||||
rewrite Heq2.
|
||||
apply NatSet.member_empty.
|
||||
pose proof (NatWithEquality.equal_ok k1 k2).
|
||||
cases (NatWithEquality.equal k1 k2); simplify.
|
||||
equality.
|
||||
unfold fromRange.
|
||||
cases (Compare_dec.leb from to); simplify.
|
||||
apply member_fromRange'.
|
||||
apply Compare_dec.leb_complete; assumption.
|
||||
equality.
|
||||
apply NatSet.member_add_noteq.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Theorem decidable_equality : forall a b : key, a = b \/ a <> b.
|
||||
Proof.
|
||||
simplify.
|
||||
pose proof (NatWithEquality.equal_ok a b).
|
||||
cases (NatWithEquality.equal a b); propositional.
|
||||
Qed.
|
||||
End NatRangeSet.
|
||||
|
||||
Module FasterNatDuplicateFinder := FindDuplicates(NatRangeSet).
|
||||
|
||||
Fixpoint upto (n : nat) : list nat :=
|
||||
match n with
|
||||
| 0 => []
|
||||
| S n' => n' :: upto n'
|
||||
end.
|
||||
|
||||
Compute NatDuplicateFinder.noDuplicates (upto 1000).
|
||||
Compute FasterNatDuplicateFinder.noDuplicates (upto 1000).
|
||||
|
|
Loading…
Reference in a new issue