mirror of
https://github.com/achlipala/frap.git
synced 2025-01-20 21:46:11 +00:00
Revising HoareLogic
This commit is contained in:
parent
26365924ef
commit
d5c7b9d7ce
3 changed files with 480 additions and 3 deletions
475
HoareLogic_template.v
Normal file
475
HoareLogic_template.v
Normal file
|
@ -0,0 +1,475 @@
|
|||
Require Import Frap.
|
||||
|
||||
|
||||
(** * Syntax and semantics of a simple imperative language *)
|
||||
|
||||
Inductive exp :=
|
||||
| Const (n : nat)
|
||||
| Var (x : string)
|
||||
| Read (e1 : exp)
|
||||
| Plus (e1 e2 : exp)
|
||||
| Minus (e1 e2 : exp)
|
||||
| Mult (e1 e2 : exp).
|
||||
|
||||
Inductive bexp :=
|
||||
| Equal (e1 e2 : exp)
|
||||
| Less (e1 e2 : exp).
|
||||
|
||||
Definition heap := fmap nat nat.
|
||||
Definition valuation := fmap var nat.
|
||||
Definition assertion := heap -> valuation -> Prop.
|
||||
|
||||
Inductive cmd :=
|
||||
| Skip
|
||||
| Assign (x : var) (e : exp)
|
||||
| Write (e1 e2 : exp)
|
||||
| Seq (c1 c2 : cmd)
|
||||
| If_ (be : bexp) (then_ else_ : cmd)
|
||||
| While_ (inv : assertion) (be : bexp) (body : cmd)
|
||||
|
||||
| Assert (a : assertion).
|
||||
|
||||
(* Shorthand notation for looking up in a finite map, returning zero if the key
|
||||
* is not found *)
|
||||
Notation "m $! k" := (match m $? k with Some n => n | None => O end) (at level 30).
|
||||
|
||||
(* Start of expression semantics: meaning of expressions *)
|
||||
Fixpoint eval (e : exp) (h : heap) (v : valuation) : nat :=
|
||||
match e with
|
||||
| Const n => n
|
||||
| Var x => v $! x
|
||||
| Read e1 => h $! eval e1 h v
|
||||
| Plus e1 e2 => eval e1 h v + eval e2 h v
|
||||
| Minus e1 e2 => eval e1 h v - eval e2 h v
|
||||
| Mult e1 e2 => eval e1 h v * eval e2 h v
|
||||
end.
|
||||
|
||||
(* Meaning of Boolean expressions *)
|
||||
Fixpoint beval (b : bexp) (h : heap) (v : valuation) : bool :=
|
||||
match b with
|
||||
| Equal e1 e2 => if eval e1 h v ==n eval e2 h v then true else false
|
||||
| Less e1 e2 => if eval e2 h v <=? eval e1 h v then false else true
|
||||
end.
|
||||
|
||||
(* A big-step operational semantics for commands *)
|
||||
Inductive exec : heap -> valuation -> cmd -> heap -> valuation -> Prop :=
|
||||
| ExSkip : forall h v,
|
||||
exec h v Skip h v
|
||||
| ExAssign : forall h v x e,
|
||||
exec h v (Assign x e) h (v $+ (x, eval e h v))
|
||||
| ExWrite : forall h v e1 e2,
|
||||
exec h v (Write e1 e2) (h $+ (eval e1 h v, eval e2 h v)) v
|
||||
| ExSeq : forall h1 v1 c1 h2 v2 c2 h3 v3,
|
||||
exec h1 v1 c1 h2 v2
|
||||
-> exec h2 v2 c2 h3 v3
|
||||
-> exec h1 v1 (Seq c1 c2) h3 v3
|
||||
| ExIfTrue : forall h1 v1 b c1 c2 h2 v2,
|
||||
beval b h1 v1 = true
|
||||
-> exec h1 v1 c1 h2 v2
|
||||
-> exec h1 v1 (If_ b c1 c2) h2 v2
|
||||
| ExIfFalse : forall h1 v1 b c1 c2 h2 v2,
|
||||
beval b h1 v1 = false
|
||||
-> exec h1 v1 c2 h2 v2
|
||||
-> exec h1 v1 (If_ b c1 c2) h2 v2
|
||||
| ExWhileFalse : forall I h v b c,
|
||||
beval b h v = false
|
||||
-> exec h v (While_ I b c) h v
|
||||
| ExWhileTrue : forall I h1 v1 b c h2 v2 h3 v3,
|
||||
beval b h1 v1 = true
|
||||
-> exec h1 v1 c h2 v2
|
||||
-> exec h2 v2 (While_ I b c) h3 v3
|
||||
-> exec h1 v1 (While_ I b c) h3 v3
|
||||
|
||||
(* Assertions execute only when they are true. They provide a way to embed
|
||||
* proof obligations within programs. *)
|
||||
| ExAssert : forall h v (a : assertion),
|
||||
a h v
|
||||
-> exec h v (Assert a) h v.
|
||||
|
||||
|
||||
(** * Hoare logic *)
|
||||
|
||||
Inductive hoare_triple : assertion -> cmd -> assertion -> Prop :=
|
||||
| HtSkip : forall P, hoare_triple P Skip P
|
||||
| HtAssign : forall (P : assertion) x e,
|
||||
hoare_triple P (Assign x e) (fun h v => exists v', P h v' /\ v = v' $+ (x, eval e h v'))
|
||||
| HtWrite : forall (P : assertion) (e1 e2 : exp),
|
||||
hoare_triple P (Write e1 e2) (fun h v => exists h', P h' v /\ h = h' $+ (eval e1 h' v, eval e2 h' v))
|
||||
| HtSeq : forall (P Q R : assertion) c1 c2,
|
||||
hoare_triple P c1 Q
|
||||
-> hoare_triple Q c2 R
|
||||
-> hoare_triple P (Seq c1 c2) R
|
||||
| HtIf : forall (P Q1 Q2 : assertion) b c1 c2,
|
||||
hoare_triple (fun h v => P h v /\ beval b h v = true) c1 Q1
|
||||
-> hoare_triple (fun h v => P h v /\ beval b h v = false) c2 Q2
|
||||
-> hoare_triple P (If_ b c1 c2) (fun h v => Q1 h v \/ Q2 h v)
|
||||
| HtWhile : forall (I P : assertion) b c,
|
||||
(forall h v, P h v -> I h v)
|
||||
-> hoare_triple (fun h v => I h v /\ beval b h v = true) c I
|
||||
-> hoare_triple P (While_ I b c) (fun h v => I h v /\ beval b h v = false)
|
||||
| HtAssert : forall P I : assertion,
|
||||
(forall h v, P h v -> I h v)
|
||||
-> hoare_triple P (Assert I) P
|
||||
| HtConsequence : forall (P Q P' Q' : assertion) c,
|
||||
hoare_triple P c Q
|
||||
-> (forall h v, P' h v -> P h v)
|
||||
-> (forall h v, Q h v -> Q' h v)
|
||||
-> hoare_triple P' c Q'.
|
||||
|
||||
Lemma hoare_triple_big_step_while: forall (I : assertion) b c,
|
||||
(forall h v h' v', exec h v c h' v'
|
||||
-> I h v
|
||||
-> beval b h v = true
|
||||
-> I h' v')
|
||||
-> forall h v h' v', exec h v (While_ I b c) h' v'
|
||||
-> I h v
|
||||
-> I h' v' /\ beval b h' v' = false.
|
||||
Proof.
|
||||
induct 2; eauto.
|
||||
Qed.
|
||||
|
||||
Theorem hoare_triple_big_step : forall pre c post,
|
||||
hoare_triple pre c post
|
||||
-> forall h v h' v', exec h v c h' v'
|
||||
-> pre h v
|
||||
-> post h' v'.
|
||||
Proof.
|
||||
induct 1; eauto; invert 1; eauto.
|
||||
|
||||
simplify.
|
||||
eapply hoare_triple_big_step_while; eauto.
|
||||
Qed.
|
||||
|
||||
|
||||
(* BEGIN syntax macros that won't be explained *)
|
||||
Coercion Const : nat >-> exp.
|
||||
Coercion Var : string >-> exp.
|
||||
Notation "*[ e ]" := (Read e) : cmd_scope.
|
||||
Infix "+" := Plus : cmd_scope.
|
||||
Infix "-" := Minus : cmd_scope.
|
||||
Infix "*" := Mult : cmd_scope.
|
||||
Infix "=" := Equal : cmd_scope.
|
||||
Infix "<" := Less : cmd_scope.
|
||||
Definition set (dst src : exp) : cmd :=
|
||||
match dst with
|
||||
| Read dst' => Write dst' src
|
||||
| Var dst' => Assign dst' src
|
||||
| _ => Assign "Bad LHS" 0
|
||||
end.
|
||||
Infix "<-" := set (no associativity, at level 70) : cmd_scope.
|
||||
Infix ";;" := Seq (right associativity, at level 75) : cmd_scope.
|
||||
Notation "'when' b 'then' then_ 'else' else_ 'done'" := (If_ b then_ else_) (at level 75, b at level 0).
|
||||
Notation "{{ I }} 'while' b 'loop' body 'done'" := (While_ I b body) (at level 75).
|
||||
Notation "'assert' {{ I }}" := (Assert I) (at level 75).
|
||||
Delimit Scope cmd_scope with cmd.
|
||||
|
||||
Infix "+" := plus : reset_scope.
|
||||
Infix "-" := minus : reset_scope.
|
||||
Infix "*" := mult : reset_scope.
|
||||
Infix "=" := eq : reset_scope.
|
||||
Infix "<" := lt : reset_scope.
|
||||
Delimit Scope reset_scope with reset.
|
||||
Open Scope reset_scope.
|
||||
(* END macros *)
|
||||
|
||||
(* We should draw some attention to the next notation, which defines special
|
||||
* lambdas for writing assertions. *)
|
||||
Notation "h & v ~> e" := (fun h v => e%reset) (at level 85, v at level 0).
|
||||
|
||||
(* And here's the classic notation for Hoare triples. *)
|
||||
Notation "{{ P }} c {{ Q }}" := (hoare_triple P c%cmd Q) (at level 90, c at next level).
|
||||
|
||||
(* Special case of consequence: keeping the precondition; only changing the
|
||||
* postcondition. *)
|
||||
Lemma HtStrengthenPost : forall (P Q Q' : assertion) c,
|
||||
hoare_triple P c Q
|
||||
-> (forall h v, Q h v -> Q' h v)
|
||||
-> hoare_triple P c Q'.
|
||||
Proof.
|
||||
simplify; eapply HtConsequence; eauto.
|
||||
Qed.
|
||||
|
||||
(* Finally, three tactic definitions that we won't explain. The overall tactic
|
||||
* [ht] tries to prove Hoare triples, essentially by rote application of the
|
||||
* rules. Some other obligations are generated, generally of implications
|
||||
* between assertions, and [ht] also makes a best effort to solve those. *)
|
||||
|
||||
Ltac ht1 := apply HtSkip || apply HtAssign || apply HtWrite || eapply HtSeq
|
||||
|| eapply HtIf || eapply HtWhile || eapply HtAssert
|
||||
|| eapply HtStrengthenPost.
|
||||
|
||||
Ltac t := cbv beta; propositional; subst;
|
||||
repeat match goal with
|
||||
| [ H : ex _ |- _ ] => invert H; propositional; subst
|
||||
end;
|
||||
simplify;
|
||||
repeat match goal with
|
||||
| [ _ : context[?a <=? ?b] |- _ ] => destruct (a <=? b); try discriminate
|
||||
| [ H : ?E = ?E |- _ ] => clear H
|
||||
end; simplify; propositional; auto; try equality; try linear_arithmetic.
|
||||
|
||||
Ltac ht := simplify; repeat ht1; t.
|
||||
|
||||
|
||||
(** * Some examples of verified programs *)
|
||||
|
||||
(** ** Swapping the values in two variables *)
|
||||
|
||||
Theorem swap_ok : forall a b,
|
||||
{{_&v ~> v $! "x" = a /\ v $! "y" = b}}
|
||||
"tmp" <- "x";;
|
||||
"x" <- "y";;
|
||||
"y" <- "tmp"
|
||||
{{_&v ~> v $! "x" = b /\ v $! "y" = a}}.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
(** ** Computing the maximum of two variables *)
|
||||
|
||||
Theorem max_ok : forall a b,
|
||||
{{_&v ~> v $! "x" = a /\ v $! "y" = b}}
|
||||
when "x" < "y" then
|
||||
"m" <- "y"
|
||||
else
|
||||
"m" <- "x"
|
||||
done
|
||||
{{_&v ~> v $! "m" = max a b}}.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
(** ** Iterative factorial *)
|
||||
|
||||
Theorem fact_ok : forall n,
|
||||
{{_&v ~> v $! "n" = n}}
|
||||
"acc" <- 1;;
|
||||
{{_&v ~> True}}
|
||||
while 0 < "n" loop
|
||||
"acc" <- "acc" * "n";;
|
||||
"n" <- "n" - 1
|
||||
done
|
||||
{{_&v ~> v $! "acc" = fact n}}.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
(** ** Selection sort *)
|
||||
|
||||
(* This is our one example of a program reading/writing memory, which holds the
|
||||
* representation of an array that we want to sort in-place. *)
|
||||
|
||||
(* One simple lemma turns out to be helpful to guide [eauto] properly. *)
|
||||
Lemma leq_f : forall A (m : fmap A nat) x y,
|
||||
x = y
|
||||
-> m $! x <= m $! y.
|
||||
Proof.
|
||||
ht.
|
||||
Qed.
|
||||
|
||||
Hint Resolve leq_f.
|
||||
Hint Extern 1 (@eq nat _ _) => linear_arithmetic.
|
||||
Hint Extern 1 (_ < _) => linear_arithmetic.
|
||||
Hint Extern 1 (_ <= _) => linear_arithmetic.
|
||||
(* We also register [linear_arithmetic] as a step to try during proof search. *)
|
||||
|
||||
Theorem selectionSort_ok :
|
||||
{{_&_ ~> True}}
|
||||
"i" <- 0;;
|
||||
{{h&v ~> True}}
|
||||
while "i" < "n" loop
|
||||
"j" <- "i"+1;;
|
||||
"best" <- "i";;
|
||||
{{h&v ~> True}}
|
||||
while "j" < "n" loop
|
||||
when *["a" + "j"] < *["a" + "best"] then
|
||||
"best" <- "j"
|
||||
else
|
||||
Skip
|
||||
done;;
|
||||
"j" <- "j" + 1
|
||||
done;;
|
||||
"tmp" <- *["a" + "best"];;
|
||||
*["a" + "best"] <- *["a" + "i"];;
|
||||
*["a" + "i"] <- "tmp";;
|
||||
"i" <- "i" + 1
|
||||
done
|
||||
{{h&v ~> forall i j, i < j < v $! "n" -> h $! (v $! "a" + i) <= h $! (v $! "a" + j)}}.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
|
||||
(** * An alternative correctness theorem for Hoare logic, with small-step semantics *)
|
||||
|
||||
Inductive step : heap * valuation * cmd -> heap * valuation * cmd -> Prop :=
|
||||
| StAssign : forall h v x e,
|
||||
step (h, v, Assign x e) (h, v $+ (x, eval e h v), Skip)
|
||||
| StWrite : forall h v e1 e2,
|
||||
step (h, v, Write e1 e2) (h $+ (eval e1 h v, eval e2 h v), v, Skip)
|
||||
| StStepSkip : forall h v c,
|
||||
step (h, v, Seq Skip c) (h, v, c)
|
||||
| StStepRec : forall h1 v1 c1 h2 v2 c1' c2,
|
||||
step (h1, v1, c1) (h2, v2, c1')
|
||||
-> step (h1, v1, Seq c1 c2) (h2, v2, Seq c1' c2)
|
||||
| StIfTrue : forall h v b c1 c2,
|
||||
beval b h v = true
|
||||
-> step (h, v, If_ b c1 c2) (h, v, c1)
|
||||
| StIfFalse : forall h v b c1 c2,
|
||||
beval b h v = false
|
||||
-> step (h, v, If_ b c1 c2) (h, v, c2)
|
||||
| StWhileFalse : forall I h v b c,
|
||||
beval b h v = false
|
||||
-> step (h, v, While_ I b c) (h, v, Skip)
|
||||
| StWhileTrue : forall I h v b c,
|
||||
beval b h v = true
|
||||
-> step (h, v, While_ I b c) (h, v, Seq c (While_ I b c))
|
||||
| StAssert : forall h v (a : assertion),
|
||||
a h v
|
||||
-> step (h, v, Assert a) (h, v, Skip).
|
||||
|
||||
Hint Constructors step.
|
||||
|
||||
Definition trsys_of (st : heap * valuation * cmd) := {|
|
||||
Initial := {st};
|
||||
Step := step
|
||||
|}.
|
||||
|
||||
Definition unstuck (st : heap * valuation * cmd) :=
|
||||
snd st = Skip
|
||||
\/ exists st', step st st'.
|
||||
|
||||
Lemma hoare_triple_unstuck : forall P c Q,
|
||||
{{P}} c {{Q}}
|
||||
-> forall h v, P h v
|
||||
-> unstuck (h, v, c).
|
||||
Proof.
|
||||
induct 1; unfold unstuck; simplify; propositional; eauto.
|
||||
|
||||
apply IHhoare_triple1 in H1.
|
||||
unfold unstuck in H1; simplify; first_order; subst; eauto.
|
||||
cases x.
|
||||
cases p.
|
||||
eauto.
|
||||
|
||||
cases (beval b h v); eauto.
|
||||
|
||||
cases (beval b h v); eauto.
|
||||
|
||||
apply H0 in H2.
|
||||
apply IHhoare_triple in H2.
|
||||
unfold unstuck in H2; simplify; first_order.
|
||||
Qed.
|
||||
|
||||
Lemma hoare_triple_Skip : forall P Q,
|
||||
{{P}} Skip {{Q}}
|
||||
-> forall h v, P h v -> Q h v.
|
||||
Proof.
|
||||
induct 1; auto.
|
||||
Qed.
|
||||
|
||||
Lemma hoare_triple_step : forall P c Q,
|
||||
{{P}} c {{Q}}
|
||||
-> forall h v h' v' c',
|
||||
step (h, v, c) (h', v', c')
|
||||
-> P h v
|
||||
-> {{h''&v'' ~> h'' = h' /\ v'' = v'}} c' {{Q}}.
|
||||
Proof.
|
||||
induct 1.
|
||||
|
||||
invert 1.
|
||||
|
||||
invert 1; ht; eauto.
|
||||
|
||||
invert 1; ht; eauto.
|
||||
|
||||
invert 1; simplify.
|
||||
|
||||
eapply HtConsequence; eauto.
|
||||
propositional; subst.
|
||||
eapply hoare_triple_Skip; eauto.
|
||||
|
||||
econstructor; eauto.
|
||||
|
||||
invert 1; simplify.
|
||||
eapply HtConsequence; eauto; equality.
|
||||
eapply HtConsequence; eauto; equality.
|
||||
|
||||
invert 1; simplify.
|
||||
eapply HtConsequence with (P := h'' & v'' ~> h'' = h' /\ v'' = v').
|
||||
apply HtSkip.
|
||||
auto.
|
||||
simplify; propositional; subst; eauto.
|
||||
|
||||
econstructor.
|
||||
eapply HtConsequence; eauto.
|
||||
simplify; propositional; subst; eauto.
|
||||
econstructor; eauto.
|
||||
|
||||
invert 1; simplify.
|
||||
eapply HtConsequence; eauto.
|
||||
econstructor.
|
||||
simplify; propositional; subst; eauto.
|
||||
|
||||
simplify.
|
||||
eapply HtConsequence.
|
||||
eapply IHhoare_triple; eauto.
|
||||
simplify; propositional; subst; eauto.
|
||||
auto.
|
||||
Qed.
|
||||
|
||||
Theorem hoare_triple_invariant : forall P c Q h v,
|
||||
{{P}} c {{Q}}
|
||||
-> P h v
|
||||
-> invariantFor (trsys_of (h, v, c)) unstuck.
|
||||
Proof.
|
||||
simplify.
|
||||
apply invariant_weaken with (invariant1 := fun st => {{h&v ~> h = fst (fst st)
|
||||
/\ v = snd (fst st)}}
|
||||
snd st
|
||||
{{_&_ ~> True}}).
|
||||
|
||||
apply invariant_induction; simplify.
|
||||
|
||||
propositional; subst; simplify.
|
||||
eapply HtConsequence; eauto.
|
||||
equality.
|
||||
|
||||
cases s.
|
||||
cases s'.
|
||||
cases p.
|
||||
cases p0.
|
||||
simplify.
|
||||
eapply hoare_triple_step; eauto.
|
||||
simplify; auto.
|
||||
|
||||
simplify.
|
||||
cases s.
|
||||
cases p.
|
||||
simplify.
|
||||
eapply hoare_triple_unstuck; eauto.
|
||||
simplify; auto.
|
||||
Qed.
|
||||
|
||||
(* A very simple example, just to show all this in action *)
|
||||
Definition forever := (
|
||||
"i" <- 1;;
|
||||
"n" <- 1;;
|
||||
{{h&v ~> v $! "i" > 0}}
|
||||
while 0 < "i" loop
|
||||
"i" <- "i" * 2;;
|
||||
"n" <- "n" + "i";;
|
||||
assert {{h&v ~> v $! "n" >= 1}}
|
||||
done;;
|
||||
|
||||
assert {{_&_ ~> False}}
|
||||
(* Note that this last assertion implies that the program never terminates! *)
|
||||
)%cmd.
|
||||
|
||||
Theorem forever_ok : {{_&_ ~> True}} forever {{_&_ ~> False}}.
|
||||
Proof.
|
||||
ht.
|
||||
Qed.
|
||||
|
||||
Theorem forever_invariant : invariantFor (trsys_of ($0, $0, forever)) unstuck.
|
||||
Proof.
|
||||
eapply hoare_triple_invariant.
|
||||
apply forever_ok.
|
||||
simplify; trivial.
|
||||
Qed.
|
|
@ -41,6 +41,8 @@ LambdaCalculusAndTypeSoundness.v
|
|||
DependentInductiveTypes_template.v
|
||||
DependentInductiveTypes.v
|
||||
TypesAndMutation.v
|
||||
HoareLogic_template.v
|
||||
HoareLogic.v
|
||||
DeepAndShallowEmbeddings_template.v
|
||||
DeepAndShallowEmbeddings.v
|
||||
SepCancel.v
|
||||
|
|
|
@ -3191,7 +3191,7 @@ Nonetheless, the essential proof structure winds up being the same, as we once a
|
|||
\section{An Imperative Language with Memory}
|
||||
|
||||
\newcommand{\assert}[1]{\mathsf{assert}(#1)}
|
||||
\newcommand{\readfrom}[1]{*[#1]}
|
||||
\newcommand{\readfrom}[1]{{*}[#1]}
|
||||
\newcommand{\writeto}[2]{\readfrom{#1} \leftarrow #2}
|
||||
|
||||
To provide us with an interesting enough playground for program verification, let's begin by defining an imperative language with an infinite mutable heap.
|
||||
|
@ -3436,10 +3436,10 @@ In fact, we can prove that any other state is unstuck, though we won't bother he
|
|||
By induction on the derivation of $\hoare{P}{c}{Q}$, appealing to Lemma \ref{hoare_skip} in one case. Note how we conclude a very specific precondition, forcing exact state equality with the one we have stepped to.
|
||||
\end{proof}
|
||||
|
||||
\begin{theorem}[Invariant Safety]
|
||||
\invariants
|
||||
\begin{lemma}[Invariant Safety]
|
||||
If $\hoare{P}{c}{Q}$ and $P(h, v)$, then unstuckness is an invariant for the small-step transition system starting at $(h, v, c)$.
|
||||
\end{lemma}
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
First we weaken the invariant to $I(h, v, c) = \hoare{\lambda s. \; s = (h, v)}{c}{\lambda \_. \; \top}$.
|
||||
That is, we focus in on the most specific applicable precondition, and we forget everything that the postcondition was recording for us.
|
||||
|
|
Loading…
Reference in a new issue