mirror of
https://github.com/achlipala/frap.git
synced 2025-01-20 21:46:11 +00:00
TransitionSystems: code probably done
This commit is contained in:
parent
ee02d8926a
commit
ef3f36933a
1 changed files with 432 additions and 12 deletions
|
@ -133,6 +133,13 @@ Definition factorial_sys (original_input : nat) : trsys fact_state := {|
|
|||
Step := fact_step
|
||||
|}.
|
||||
|
||||
(* A useful general notion for transition systems: reachable states *)
|
||||
Inductive reachable {state} (sys : trsys state) (st : state) : Prop :=
|
||||
| Reachable : forall st0,
|
||||
sys.(Initial) st0
|
||||
-> sys.(Step)^* st0 st
|
||||
-> reachable sys st.
|
||||
|
||||
(* To prove that our state machine is correct, we rely on the crucial technique
|
||||
* of *invariants*. What is an invariant? Here's a general definition, in
|
||||
* terms of an arbitrary *transition system* defined by a set of states,
|
||||
|
@ -146,7 +153,7 @@ Definition invariantFor {state} (sys : trsys state) (invariant : state -> Prop)
|
|||
|
||||
(* Here's a simple lemma to help us apply an invariant usefully,
|
||||
* really just restating the definition. *)
|
||||
Theorem use_invariant : forall {state} (sys : trsys state)
|
||||
Lemma use_invariant' : forall {state} (sys : trsys state)
|
||||
(invariant : state -> Prop) s s',
|
||||
invariantFor sys invariant
|
||||
-> sys.(Initial) s
|
||||
|
@ -160,6 +167,20 @@ Proof.
|
|||
assumption.
|
||||
Qed.
|
||||
|
||||
Theorem use_invariant : forall {state} (sys : trsys state)
|
||||
(invariant : state -> Prop) s,
|
||||
invariantFor sys invariant
|
||||
-> reachable sys s
|
||||
-> invariant s.
|
||||
Proof.
|
||||
simplify.
|
||||
invert H0.
|
||||
eapply use_invariant'.
|
||||
eassumption.
|
||||
eassumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
(* What's the most fundamental way to establish an invariant? Induction! *)
|
||||
Lemma invariant_induction' : forall {state} (sys : trsys state)
|
||||
(invariant : state -> Prop),
|
||||
|
@ -234,15 +255,13 @@ Proof.
|
|||
Qed.
|
||||
|
||||
(* Therefore, every reachable state satisfies this invariant. *)
|
||||
Theorem fact_invariant_always : forall original_input s s',
|
||||
(factorial_sys original_input).(Step)^* s s'
|
||||
-> (factorial_sys original_input).(Initial) s
|
||||
-> fact_invariant original_input s'.
|
||||
Theorem fact_invariant_always : forall original_input s,
|
||||
reachable (factorial_sys original_input) s
|
||||
-> fact_invariant original_input s.
|
||||
Proof.
|
||||
simplify.
|
||||
eapply use_invariant.
|
||||
apply fact_invariant_ok.
|
||||
eassumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
|
@ -255,16 +274,417 @@ Proof.
|
|||
invert 1; simplify; equality.
|
||||
Qed.
|
||||
|
||||
Theorem fact_ok : forall original_input s s',
|
||||
(factorial_sys original_input).(Step)^* s s'
|
||||
-> (factorial_sys original_input).(Initial) s
|
||||
-> fact_final s'
|
||||
-> s' = AnswerIs (fact original_input).
|
||||
Theorem fact_ok : forall original_input s,
|
||||
reachable (factorial_sys original_input) s
|
||||
-> fact_final s
|
||||
-> s = AnswerIs (fact original_input).
|
||||
Proof.
|
||||
simplify.
|
||||
apply fact_ok'.
|
||||
assumption.
|
||||
eapply fact_invariant_always.
|
||||
apply fact_invariant_always.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
|
||||
(** * A simple example of another program as a state transition system *)
|
||||
|
||||
(* We'll formalize this pseudocode for one thread of a concurrent, shared-memory program.
|
||||
lock();
|
||||
local = global;
|
||||
global = local + 1;
|
||||
unlock();
|
||||
*)
|
||||
|
||||
(* This inductive state effectively encodes all possible combinations of two
|
||||
* kinds of *local*state* in a thread:
|
||||
* - program counter
|
||||
* - values of local variables that may be ready eventually *)
|
||||
Inductive increment_program : Set :=
|
||||
| Lock : increment_program
|
||||
| Read : increment_program
|
||||
| Write : nat -> increment_program
|
||||
| Unlock : increment_program
|
||||
| Done : increment_program.
|
||||
|
||||
(* Next, a type for state shared between threads. *)
|
||||
Record inc_state := {
|
||||
Locked : bool; (* Does a thread hold the lock? *)
|
||||
Global : nat (* A shared counter *)
|
||||
}.
|
||||
|
||||
(* The combined state, from one thread's perspective, using a general
|
||||
* definition. *)
|
||||
Record threaded_state shared private := {
|
||||
Shared : shared;
|
||||
Private : private
|
||||
}.
|
||||
|
||||
Definition increment_state := threaded_state inc_state increment_program.
|
||||
|
||||
(* Now a routine definition of the three key relations of a transition system.
|
||||
* The most interesting logic surrounds saving the counter value in the local
|
||||
* state after reading. *)
|
||||
|
||||
Inductive increment_init : increment_state -> Prop :=
|
||||
| IncInit :
|
||||
increment_init {| Shared := {| Locked := false; Global := O |};
|
||||
Private := Lock |}.
|
||||
|
||||
Inductive increment_step : increment_state -> increment_state -> Prop :=
|
||||
| IncLock : forall g,
|
||||
increment_step {| Shared := {| Locked := false; Global := g |};
|
||||
Private := Lock |}
|
||||
{| Shared := {| Locked := true; Global := g |};
|
||||
Private := Read |}
|
||||
| IncRead : forall l g,
|
||||
increment_step {| Shared := {| Locked := l; Global := g |};
|
||||
Private := Read |}
|
||||
{| Shared := {| Locked := l; Global := g |};
|
||||
Private := Write g |}
|
||||
| IncWrite : forall l g v,
|
||||
increment_step {| Shared := {| Locked := l; Global := g |};
|
||||
Private := Write v |}
|
||||
{| Shared := {| Locked := l; Global := S v |};
|
||||
Private := Unlock |}
|
||||
| IncUnlock : forall l g,
|
||||
increment_step {| Shared := {| Locked := l; Global := g |};
|
||||
Private := Unlock |}
|
||||
{| Shared := {| Locked := false; Global := g |};
|
||||
Private := Done |}.
|
||||
|
||||
Inductive increment_final : increment_state -> Prop :=
|
||||
| IncFinal : forall l g,
|
||||
increment_final {| Shared := {| Locked := l; Global := g |};
|
||||
Private := Done |}.
|
||||
|
||||
Definition increment_sys := {|
|
||||
Initial := increment_init;
|
||||
Step := increment_step
|
||||
|}.
|
||||
|
||||
|
||||
(** * Running transition systems in parallel *)
|
||||
|
||||
(* That last example system is a cop-out: it only runs a single thread. We want
|
||||
* to run several threads in parallel, sharing the global state. Here's how we
|
||||
* can do it for just two threads. The key idea is that, while in the new
|
||||
* system the type of shared state remains the same, we take the Cartesian
|
||||
* product of the sets of private state. *)
|
||||
|
||||
Inductive parallel1 shared private1 private2
|
||||
(init1 : threaded_state shared private1 -> Prop)
|
||||
(init2 : threaded_state shared private2 -> Prop)
|
||||
: threaded_state shared (private1 * private2) -> Prop :=
|
||||
| Pinit : forall sh pr1 pr2,
|
||||
init1 {| Shared := sh; Private := pr1 |}
|
||||
-> init2 {| Shared := sh; Private := pr2 |}
|
||||
-> parallel1 init1 init2 {| Shared := sh; Private := (pr1, pr2) |}.
|
||||
|
||||
Inductive parallel2 shared private1 private2
|
||||
(step1 : threaded_state shared private1 -> threaded_state shared private1 -> Prop)
|
||||
(step2 : threaded_state shared private2 -> threaded_state shared private2 -> Prop)
|
||||
: threaded_state shared (private1 * private2)
|
||||
-> threaded_state shared (private1 * private2) -> Prop :=
|
||||
| Pstep1 : forall sh pr1 pr2 sh' pr1',
|
||||
(* First thread gets to run. *)
|
||||
step1 {| Shared := sh; Private := pr1 |} {| Shared := sh'; Private := pr1' |}
|
||||
-> parallel2 step1 step2 {| Shared := sh; Private := (pr1, pr2) |}
|
||||
{| Shared := sh'; Private := (pr1', pr2) |}
|
||||
| Pstep2 : forall sh pr1 pr2 sh' pr2',
|
||||
(* Second thread gets to run. *)
|
||||
step2 {| Shared := sh; Private := pr2 |} {| Shared := sh'; Private := pr2' |}
|
||||
-> parallel2 step1 step2 {| Shared := sh; Private := (pr1, pr2) |}
|
||||
{| Shared := sh'; Private := (pr1, pr2') |}.
|
||||
|
||||
Definition parallel shared private1 private2
|
||||
(sys1 : trsys (threaded_state shared private1))
|
||||
(sys2 : trsys (threaded_state shared private2)) := {|
|
||||
Initial := parallel1 sys1.(Initial) sys2.(Initial);
|
||||
Step := parallel2 sys1.(Step) sys2.(Step)
|
||||
|}.
|
||||
|
||||
(* Example: composing two threads of the kind we formalized earlier *)
|
||||
Definition increment2_sys := parallel increment_sys increment_sys.
|
||||
|
||||
(* Let's prove that the counter is always 2 when the composed program terminates. *)
|
||||
|
||||
(* First big idea: the program counter of a thread tells us how much it has
|
||||
* added to the shared counter so far. *)
|
||||
Definition contribution_from (pr : increment_program) : nat :=
|
||||
match pr with
|
||||
| Unlock => 1
|
||||
| Done => 1
|
||||
| _ => 0
|
||||
end.
|
||||
|
||||
(* Second big idea: the program counter also tells us whether a thread holds the lock. *)
|
||||
Definition has_lock (pr : increment_program) : bool :=
|
||||
match pr with
|
||||
| Read => true
|
||||
| Write _ => true
|
||||
| Unlock => true
|
||||
| _ => false
|
||||
end.
|
||||
|
||||
(* Now we see that the shared state is a function of the two program counters,
|
||||
* as follows. *)
|
||||
Definition shared_from_private (pr1 pr2 : increment_program) :=
|
||||
{| Locked := has_lock pr1 || has_lock pr2;
|
||||
Global := contribution_from pr1 + contribution_from pr2 |}.
|
||||
|
||||
(* We also need a condition to formalize compatibility between program counters,
|
||||
* e.g. that they shouldn't both be in the critical section at once. *)
|
||||
Definition instruction_ok (self other : increment_program) :=
|
||||
match self with
|
||||
| Lock => True
|
||||
| Read => has_lock other = false
|
||||
| Write n => has_lock other = false /\ n = contribution_from other
|
||||
| Unlock => has_lock other = false
|
||||
| Done => True
|
||||
end.
|
||||
|
||||
(** Now we have the ingredients to state the invariant. *)
|
||||
Inductive increment2_invariant :
|
||||
threaded_state inc_state (increment_program * increment_program) -> Prop :=
|
||||
| Inc2Inv : forall pr1 pr2,
|
||||
instruction_ok pr1 pr2
|
||||
-> instruction_ok pr2 pr1
|
||||
-> increment2_invariant {| Shared := shared_from_private pr1 pr2; Private := (pr1, pr2) |}.
|
||||
|
||||
(** It's convenient to prove this alternative equality-based "constructor" for the invariant. *)
|
||||
Lemma Inc2Inv' : forall sh pr1 pr2,
|
||||
sh = shared_from_private pr1 pr2
|
||||
-> instruction_ok pr1 pr2
|
||||
-> instruction_ok pr2 pr1
|
||||
-> increment2_invariant {| Shared := sh; Private := (pr1, pr2) |}.
|
||||
Proof.
|
||||
intros.
|
||||
rewrite H.
|
||||
apply Inc2Inv; assumption.
|
||||
Qed.
|
||||
|
||||
(* Now, to show it really is an invariant. *)
|
||||
Theorem increment2_invariant_ok : invariantFor increment2_sys increment2_invariant.
|
||||
Proof.
|
||||
apply invariant_induction; simplify.
|
||||
|
||||
invert H.
|
||||
invert H0.
|
||||
invert H1.
|
||||
apply Inc2Inv'.
|
||||
|
||||
unfold shared_from_private.
|
||||
simplify.
|
||||
equality.
|
||||
|
||||
simplify.
|
||||
propositional.
|
||||
|
||||
simplify.
|
||||
propositional.
|
||||
|
||||
invert H.
|
||||
invert H0.
|
||||
|
||||
invert H6; simplify.
|
||||
|
||||
cases pr2; simplify.
|
||||
|
||||
apply Inc2Inv'; unfold shared_from_private; simplify.
|
||||
equality.
|
||||
equality.
|
||||
equality.
|
||||
|
||||
equality.
|
||||
(* Note that [equality] derives a contradiction from [false = true]! *)
|
||||
equality.
|
||||
equality.
|
||||
|
||||
apply Inc2Inv'; unfold shared_from_private; simplify.
|
||||
equality.
|
||||
equality.
|
||||
equality.
|
||||
|
||||
cases pr2; simplify.
|
||||
|
||||
apply Inc2Inv'; unfold shared_from_private; simplify.
|
||||
equality.
|
||||
equality.
|
||||
equality.
|
||||
|
||||
equality.
|
||||
equality.
|
||||
equality.
|
||||
|
||||
apply Inc2Inv'; unfold shared_from_private; simplify.
|
||||
equality.
|
||||
equality.
|
||||
equality.
|
||||
|
||||
cases pr2; simplify.
|
||||
|
||||
apply Inc2Inv'; unfold shared_from_private; simplify.
|
||||
equality.
|
||||
equality.
|
||||
equality.
|
||||
|
||||
equality.
|
||||
equality.
|
||||
equality.
|
||||
|
||||
apply Inc2Inv'; unfold shared_from_private; simplify.
|
||||
equality.
|
||||
equality.
|
||||
equality.
|
||||
|
||||
cases pr2; simplify.
|
||||
|
||||
apply Inc2Inv'; unfold shared_from_private; simplify.
|
||||
equality.
|
||||
equality.
|
||||
equality.
|
||||
|
||||
equality.
|
||||
equality.
|
||||
equality.
|
||||
|
||||
apply Inc2Inv'; unfold shared_from_private; simplify.
|
||||
equality.
|
||||
equality.
|
||||
equality.
|
||||
|
||||
|
||||
invert H6.
|
||||
|
||||
cases pr1; simplify.
|
||||
|
||||
apply Inc2Inv'; unfold shared_from_private; simplify.
|
||||
equality.
|
||||
equality.
|
||||
equality.
|
||||
|
||||
equality.
|
||||
(* Note that [equality] derives a contradiction from [false = true]! *)
|
||||
equality.
|
||||
equality.
|
||||
|
||||
apply Inc2Inv'; unfold shared_from_private; simplify.
|
||||
equality.
|
||||
equality.
|
||||
equality.
|
||||
|
||||
cases pr1; simplify.
|
||||
|
||||
apply Inc2Inv'; unfold shared_from_private; simplify.
|
||||
equality.
|
||||
equality.
|
||||
equality.
|
||||
|
||||
equality.
|
||||
(* Note that [equality] derives a contradiction from [false = true]! *)
|
||||
equality.
|
||||
equality.
|
||||
|
||||
apply Inc2Inv'; unfold shared_from_private; simplify.
|
||||
equality.
|
||||
equality.
|
||||
equality.
|
||||
|
||||
cases pr1; simplify.
|
||||
|
||||
apply Inc2Inv'; unfold shared_from_private; simplify.
|
||||
equality.
|
||||
equality.
|
||||
equality.
|
||||
|
||||
equality.
|
||||
(* Note that [equality] derives a contradiction from [false = true]! *)
|
||||
equality.
|
||||
equality.
|
||||
|
||||
apply Inc2Inv'; unfold shared_from_private; simplify.
|
||||
equality.
|
||||
equality.
|
||||
equality.
|
||||
|
||||
cases pr1; simplify.
|
||||
|
||||
apply Inc2Inv'; unfold shared_from_private; simplify.
|
||||
equality.
|
||||
equality.
|
||||
equality.
|
||||
|
||||
equality.
|
||||
(* Note that [equality] derives a contradiction from [false = true]! *)
|
||||
equality.
|
||||
equality.
|
||||
|
||||
apply Inc2Inv'; unfold shared_from_private; simplify.
|
||||
equality.
|
||||
equality.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
(* We can remove the repetitive proving with a more automated proof script,
|
||||
* whose details are beyond the scope of this book, but which may be interesting
|
||||
* anyway! *)
|
||||
Theorem increment2_invariant_ok_snazzy : invariantFor increment2_sys increment2_invariant.
|
||||
Proof.
|
||||
apply invariant_induction; simplify;
|
||||
repeat match goal with
|
||||
| [ H : increment2_invariant _ |- _ ] => invert H
|
||||
| [ H : parallel1 _ _ _ |- _ ] => invert H
|
||||
| [ H : increment_init _ |- _ ] => invert H
|
||||
| [ H : parallel2 _ _ _ _ |- _ ] => invert H
|
||||
| [ H : increment_step _ _ |- _ ] => invert H
|
||||
| [ pr : increment_program |- _ ] => cases pr; simplify
|
||||
end; try equality;
|
||||
apply Inc2Inv'; unfold shared_from_private; simplify; equality.
|
||||
Qed.
|
||||
|
||||
(* Now, to prove our final result about the two incrementing threads, let's use
|
||||
* a more general fact, about when one invariant implies another. *)
|
||||
Theorem invariantFor_weaken : forall {state} (sys : trsys state)
|
||||
(invariant1 invariant2 : state -> Prop),
|
||||
(forall s, invariant1 s -> invariant2 s)
|
||||
-> invariantFor sys invariant1
|
||||
-> invariantFor sys invariant2.
|
||||
Proof.
|
||||
unfold invariantFor; simplify.
|
||||
apply H.
|
||||
eapply H0.
|
||||
eassumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
(* Here's another, much weaker invariant, corresponding exactly to the overall
|
||||
* correctness property we want to establish for this system. *)
|
||||
Definition increment2_right_answer
|
||||
(s : threaded_state inc_state (increment_program * increment_program)) :=
|
||||
s.(Private) = (Done, Done)
|
||||
-> s.(Shared).(Global) = 2.
|
||||
|
||||
(** Now we can prove that the system only runs to happy states. *)
|
||||
Theorem increment2_sys_correct : forall s,
|
||||
reachable increment2_sys s
|
||||
-> increment2_right_answer s.
|
||||
Proof.
|
||||
simplify.
|
||||
eapply use_invariant.
|
||||
apply invariantFor_weaken with (invariant1 := increment2_invariant).
|
||||
(* Note the use of a [with] clause to specify a quantified variable's
|
||||
* value. *)
|
||||
|
||||
simplify.
|
||||
invert H0.
|
||||
unfold increment2_right_answer; simplify.
|
||||
invert H0.
|
||||
(* Here we use inversion on an equality, to derive more primitive
|
||||
* equalities. *)
|
||||
simplify.
|
||||
equality.
|
||||
|
||||
apply increment2_invariant_ok.
|
||||
assumption.
|
||||
Qed.
|
||||
|
|
Loading…
Reference in a new issue