mirror of
https://github.com/achlipala/frap.git
synced 2025-01-10 01:54:13 +00:00
ConcurrentSeparationLogic_template: extend to match last change
This commit is contained in:
parent
b7f248e099
commit
f73e30817b
1 changed files with 25 additions and 19 deletions
|
@ -323,11 +323,13 @@ Inductive hoare_triple (linvs : list hprop) : forall {result}, hprop -> cmd resu
|
||||||
nth_error linvs a = Some I
|
nth_error linvs a = Some I
|
||||||
-> hoare_triple linvs I (Unlock a) (fun _ => emp)%sep
|
-> hoare_triple linvs I (Unlock a) (fun _ => emp)%sep
|
||||||
|
|
||||||
(* When forking into two threads, divide the (local) heap among them. *)
|
(* When forking into two threads, divide the (local) heap among them.
|
||||||
|
* For simplicity, we never let parallel compositions terminate,
|
||||||
|
* so it is appropriate to assign a contradictory overall postcondition. *)
|
||||||
| HtPar : forall P1 c1 Q1 P2 c2 Q2,
|
| HtPar : forall P1 c1 Q1 P2 c2 Q2,
|
||||||
hoare_triple linvs P1 c1 Q1
|
hoare_triple linvs P1 c1 Q1
|
||||||
-> hoare_triple linvs P2 c2 Q2
|
-> hoare_triple linvs P2 c2 Q2
|
||||||
-> hoare_triple linvs (P1 * P2)%sep (Par c1 c2) (fun _ => Q1 tt * Q2 tt)%sep
|
-> hoare_triple linvs (P1 * P2)%sep (Par c1 c2) (fun _ => [| False |])%sep
|
||||||
|
|
||||||
(* Now we repeat these two structural rules from before. *)
|
(* Now we repeat these two structural rules from before. *)
|
||||||
| HtConsequence : forall {result} (c : cmd result) P Q (P' : hprop) (Q' : _ -> hprop),
|
| HtConsequence : forall {result} (c : cmd result) P Q (P' : hprop) (Q' : _ -> hprop),
|
||||||
|
@ -353,6 +355,18 @@ Proof.
|
||||||
reflexivity.
|
reflexivity.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
Lemma HtStrengthenFalse : forall linvs {result} (c : cmd result) P (Q' : _ -> hprop),
|
||||||
|
hoare_triple linvs P c (fun _ => [| False |])%sep
|
||||||
|
-> hoare_triple linvs P c Q'.
|
||||||
|
Proof.
|
||||||
|
simplify.
|
||||||
|
eapply HtStrengthen; eauto.
|
||||||
|
simplify.
|
||||||
|
unfold himp; simplify.
|
||||||
|
cases H0.
|
||||||
|
tauto.
|
||||||
|
Qed.
|
||||||
|
|
||||||
Lemma HtWeaken : forall linvs {result} (c : cmd result) P Q (P' : hprop),
|
Lemma HtWeaken : forall linvs {result} (c : cmd result) P Q (P' : hprop),
|
||||||
hoare_triple linvs P c Q
|
hoare_triple linvs P c Q
|
||||||
-> P' ===> P
|
-> P' ===> P
|
||||||
|
@ -432,8 +446,8 @@ Ltac use_IH H := conseq; [ apply H | .. ]; ht.
|
||||||
Ltac loop_inv0 Inv := (eapply HtWeaken; [ apply HtLoop with (I := Inv) | .. ])
|
Ltac loop_inv0 Inv := (eapply HtWeaken; [ apply HtLoop with (I := Inv) | .. ])
|
||||||
|| (eapply HtConsequence; [ apply HtLoop with (I := Inv) | .. ]).
|
|| (eapply HtConsequence; [ apply HtLoop with (I := Inv) | .. ]).
|
||||||
Ltac loop_inv Inv := loop_inv0 Inv; ht.
|
Ltac loop_inv Inv := loop_inv0 Inv; ht.
|
||||||
Ltac fork0 P1 P2 := apply HtWeaken with (P := (P1 * P2)%sep); [ apply HtPar | ].
|
Ltac fork0 P1 P2 := apply HtWeaken with (P := (P1 * P2)%sep); [ eapply HtPar | ].
|
||||||
Ltac fork P1 P2 := fork0 P1 P2 || (eapply HtStrengthen; [ fork0 P1 P2 | ]).
|
Ltac fork P1 P2 := fork0 P1 P2 || (eapply HtStrengthenFalse; fork0 P1 P2).
|
||||||
Ltac use H := (eapply use_lemma; [ eapply H | cancel ])
|
Ltac use H := (eapply use_lemma; [ eapply H | cancel ])
|
||||||
|| (eapply HtStrengthen; [ eapply use_lemma; [ eapply H | cancel ] | ]).
|
|| (eapply HtStrengthen; [ eapply use_lemma; [ eapply H | cancel ] | ]).
|
||||||
|
|
||||||
|
@ -733,8 +747,6 @@ Proof.
|
||||||
cancel.
|
cancel.
|
||||||
cancel.
|
cancel.
|
||||||
cancel.
|
cancel.
|
||||||
|
|
||||||
cancel.
|
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
|
@ -1095,10 +1107,9 @@ Lemma invert_Par : forall linvs c1 c2 P Q,
|
||||||
-> exists P1 P2 Q1 Q2,
|
-> exists P1 P2 Q1 Q2,
|
||||||
hoare_triple linvs P1 c1 Q1
|
hoare_triple linvs P1 c1 Q1
|
||||||
/\ hoare_triple linvs P2 c2 Q2
|
/\ hoare_triple linvs P2 c2 Q2
|
||||||
/\ P ===> P1 * P2
|
/\ P ===> P1 * P2.
|
||||||
/\ Q1 tt * Q2 tt ===> Q tt.
|
|
||||||
Proof.
|
Proof.
|
||||||
induct 1; simp; eauto 10.
|
induct 1; simp; eauto 7.
|
||||||
|
|
||||||
symmetry in x0.
|
symmetry in x0.
|
||||||
apply unit_not_nat in x0; simp.
|
apply unit_not_nat in x0; simp.
|
||||||
|
@ -1106,11 +1117,10 @@ Proof.
|
||||||
symmetry in x0.
|
symmetry in x0.
|
||||||
apply unit_not_nat in x0; simp.
|
apply unit_not_nat in x0; simp.
|
||||||
|
|
||||||
eauto 10 using himp_trans.
|
eauto 8 using himp_trans.
|
||||||
|
|
||||||
exists (x * R)%sep, x0, (fun r => x1 r * R)%sep, x2; simp; eauto.
|
exists (x * R)%sep, x0, (fun r => x1 r * R)%sep, x2; simp; eauto.
|
||||||
rewrite H2; cancel.
|
rewrite H3; cancel.
|
||||||
rewrite <- H4; cancel.
|
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Transparent heq himp lift star exis ptsto.
|
Transparent heq himp lift star exis ptsto.
|
||||||
|
@ -1421,12 +1431,10 @@ Proof.
|
||||||
eapply IHstep in H2.
|
eapply IHstep in H2.
|
||||||
simp.
|
simp.
|
||||||
eexists; propositional.
|
eexists; propositional.
|
||||||
eapply HtStrengthen.
|
apply HtStrengthenFalse.
|
||||||
econstructor.
|
econstructor.
|
||||||
eassumption.
|
eassumption.
|
||||||
eassumption.
|
eassumption.
|
||||||
simp.
|
|
||||||
cases r; auto.
|
|
||||||
eapply use_himp; try eassumption.
|
eapply use_himp; try eassumption.
|
||||||
cancel.
|
cancel.
|
||||||
eapply use_himp; try eassumption.
|
eapply use_himp; try eassumption.
|
||||||
|
@ -1437,16 +1445,14 @@ Proof.
|
||||||
eapply IHstep in H0.
|
eapply IHstep in H0.
|
||||||
simp.
|
simp.
|
||||||
eexists; propositional.
|
eexists; propositional.
|
||||||
eapply HtStrengthen.
|
apply HtStrengthenFalse.
|
||||||
econstructor.
|
econstructor.
|
||||||
eassumption.
|
eassumption.
|
||||||
eassumption.
|
eassumption.
|
||||||
simp.
|
|
||||||
cases r; auto.
|
|
||||||
eapply use_himp; try eassumption.
|
eapply use_himp; try eassumption.
|
||||||
cancel.
|
cancel.
|
||||||
eapply use_himp; try eassumption.
|
eapply use_himp; try eassumption.
|
||||||
rewrite H3.
|
rewrite H4.
|
||||||
cancel.
|
cancel.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue