frap/Map.v

741 lines
21 KiB
Coq

Require Import Classical Sets ClassicalEpsilon FunctionalExtensionality.
Set Implicit Arguments.
Module Type S.
Parameter fmap : Type -> Type -> Type.
Parameter empty : forall A B, fmap A B.
Parameter lookup : forall A B, fmap A B -> A -> option B.
Parameter add : forall A B, fmap A B -> A -> B -> fmap A B.
Parameter remove : forall A B, fmap A B -> A -> fmap A B.
Parameter join : forall A B, fmap A B -> fmap A B -> fmap A B.
Parameter merge : forall A B, (option B -> option B -> option B) -> fmap A B -> fmap A B -> fmap A B.
Parameter restrict : forall A B, (A -> Prop) -> fmap A B -> fmap A B.
Parameter includes : forall A B, fmap A B -> fmap A B -> Prop.
Notation "$0" := (empty _ _).
Notation "m $+ ( k , v )" := (add m k v) (at level 50, left associativity).
Infix "$-" := remove (at level 50, left associativity).
Infix "$++" := join (at level 50, left associativity).
Infix "$?" := lookup (at level 50, no associativity).
Infix "$<=" := includes (at level 75).
Parameter dom : forall A B, fmap A B -> set A.
Axiom fmap_ext : forall A B (m1 m2 : fmap A B),
(forall k, m1 $? k = m2 $? k)
-> m1 = m2.
Axiom lookup_empty : forall A B k, empty A B $? k = None.
Axiom includes_lookup : forall A B (m m' : fmap A B) k v,
m $? k = Some v
-> m $<= m'
-> lookup m' k = Some v.
Axiom includes_add : forall A B (m m' : fmap A B) k v,
m $<= m'
-> add m k v $<= add m' k v.
Axiom lookup_add_eq : forall A B (m : fmap A B) k1 k2 v,
k1 = k2
-> add m k1 v $? k2 = Some v.
Axiom lookup_add_ne : forall A B (m : fmap A B) k k' v,
k' <> k
-> add m k v $? k' = m $? k'.
Axiom lookup_remove_eq : forall A B (m : fmap A B) k1 k2,
k1 = k2
-> remove m k1 $? k2 = None.
Axiom lookup_remove_ne : forall A B (m : fmap A B) k k',
k' <> k
-> remove m k $? k' = m $? k'.
Axiom lookup_join1 : forall A B (m1 m2 : fmap A B) k,
k \in dom m1
-> (m1 $++ m2) $? k = m1 $? k.
Axiom lookup_join2 : forall A B (m1 m2 : fmap A B) k,
~k \in dom m1
-> (m1 $++ m2) $? k = m2 $? k.
Axiom join_comm : forall A B (m1 m2 : fmap A B),
dom m1 \cap dom m2 = constant nil
-> m1 $++ m2 = m2 $++ m1.
Axiom join_assoc : forall A B (m1 m2 m3 : fmap A B),
(m1 $++ m2) $++ m3 = m1 $++ (m2 $++ m3).
Axiom lookup_merge : forall A B f (m1 m2 : fmap A B) k,
merge f m1 m2 $? k = f (m1 $? k) (m2 $? k).
Axiom merge_empty1 : forall A B f (m : fmap A B),
(forall x, f None x = x)
-> merge f (@empty _ _) m = m.
Axiom merge_empty2 : forall A B f (m : fmap A B),
(forall x, f x None = x)
-> merge f m (@empty _ _) = m.
Axiom merge_empty1_alt : forall A B f (m : fmap A B),
(forall x, f None x = None)
-> merge f (@empty _ _) m = @empty _ _.
Axiom merge_empty2_alt : forall A B f (m : fmap A B),
(forall x, f x None = None)
-> merge f m (@empty _ _) = @empty _ _.
Axiom merge_add1 : forall A B f (m1 m2 : fmap A B) k v,
(forall x y, f (Some x) y = None -> False)
-> ~k \in dom m1
-> merge f (add m1 k v) m2 = match f (Some v) (lookup m2 k) with
| None => merge f m1 m2
| Some v => add (merge f m1 m2) k v
end.
Axiom merge_add2 : forall A B f (m1 m2 : fmap A B) k v,
(forall x y, f x (Some y) = None -> False)
-> ~k \in dom m2
-> merge f m1 (add m2 k v) = match f (lookup m1 k) (Some v) with
| None => merge f m1 m2
| Some v => add (merge f m1 m2) k v
end.
Axiom merge_add1_alt : forall A B f (m1 m2 : fmap A B) k v,
(forall x y, f (Some x) (Some y) = None -> False)
-> ~k \in dom m1
-> k \in dom m2
-> merge f (add m1 k v) m2 = match f (Some v) (lookup m2 k) with
| None => merge f m1 m2
| Some v => add (merge f m1 m2) k v
end.
Axiom empty_includes : forall A B (m : fmap A B), empty A B $<= m.
Axiom dom_empty : forall A B, dom (empty A B) = constant nil.
Axiom dom_add : forall A B (m : fmap A B) (k : A) (v : B),
dom (add m k v) = constant (k :: nil) \cup dom m.
Axiom lookup_restrict_true : forall A B (P : A -> Prop) (m : fmap A B) k,
P k
-> lookup (restrict P m) k = lookup m k.
Axiom lookup_restrict_false : forall A B (P : A -> Prop) (m : fmap A B) k,
~P k
-> lookup (restrict P m) k = None.
Axiom lookup_restrict_true_fwd : forall A B (P : A -> Prop) (m : fmap A B) k v,
lookup (restrict P m) k = Some v
-> P k.
Global Hint Extern 1 => match goal with
| [ H : lookup (empty _ _) _ = Some _ |- _ ] =>
rewrite lookup_empty in H; discriminate
end : core.
Global Hint Resolve includes_lookup includes_add empty_includes : core.
Global Hint Rewrite lookup_empty lookup_add_eq lookup_add_ne lookup_remove_eq lookup_remove_ne
lookup_merge lookup_restrict_true lookup_restrict_false using congruence.
Global Hint Rewrite dom_empty dom_add.
Ltac maps_equal :=
apply fmap_ext; intros;
repeat (subst; autorewrite with core; try reflexivity;
match goal with
| [ |- context[lookup (add _ ?k _) ?k' ] ] => destruct (classic (k = k')); subst
end).
Global Hint Extern 3 (_ = _) => maps_equal : core.
Axiom lookup_split : forall A B (m : fmap A B) k v k' v',
(m $+ (k, v)) $? k' = Some v'
-> (k' <> k /\ m $? k' = Some v') \/ (k' = k /\ v' = v).
Global Hint Rewrite merge_empty1 merge_empty2 using solve [ eauto 1 ].
Global Hint Rewrite merge_empty1_alt merge_empty2_alt using congruence.
Global Hint Rewrite merge_add1 using solve [ eauto | unfold Sets.In; autorewrite with core in *; simpl in *; try (normalize_set; simpl); intuition congruence ].
Global Hint Rewrite merge_add1_alt using solve [ congruence | unfold Sets.In; autorewrite with core in *; simpl in *; try (normalize_set; simpl); intuition congruence ].
Axiom includes_intro : forall K V (m1 m2 : fmap K V),
(forall k v, m1 $? k = Some v -> m2 $? k = Some v)
-> m1 $<= m2.
Axiom lookup_Some_dom : forall K V (m : fmap K V) k v,
m $? k = Some v
-> k \in dom m.
Axiom lookup_None_dom : forall K V (m : fmap K V) k,
m $? k = None
-> ~ k \in dom m.
(* Bits meant for separation logic *)
Section splitting.
Variables K V : Type.
Definition disjoint (h1 h2 : fmap K V) : Prop :=
forall a, h1 $? a <> None
-> h2 $? a <> None
-> False.
Definition split (h h1 h2 : fmap K V) : Prop :=
h = h1 $++ h2.
Axiom split_empty_fwd : forall h h1,
split h h1 $0
-> h = h1.
Axiom split_empty_fwd' : forall h h1,
split h $0 h1
-> h = h1.
Axiom split_empty_bwd : forall h,
split h h $0.
Axiom split_empty_bwd' : forall h,
split h $0 h.
Axiom disjoint_hemp : forall h,
disjoint h $0.
Axiom disjoint_hemp' : forall h,
disjoint $0 h.
Axiom disjoint_comm : forall h1 h2,
disjoint h1 h2
-> disjoint h2 h1.
Axiom split_comm : forall h h1 h2,
disjoint h1 h2
-> split h h1 h2
-> split h h2 h1.
Axiom split_assoc1 : forall h h1 h' h2 h3,
split h h1 h'
-> split h' h2 h3
-> split h (join h1 h2) h3.
Axiom split_assoc2' : forall h h1 h' h2 h3,
split h h1 h'
-> split h' h2 h3
-> disjoint h1 h'
-> disjoint h2 h3
-> split h h2 (join h3 h1).
Axiom split_assoc2 : forall h h1 h' h2 h3,
split h h' h1
-> split h' h2 h3
-> disjoint h' h1
-> disjoint h2 h3
-> split h h2 (join h3 h1).
Axiom disjoint_assoc1 : forall h h1 h' h2 h3,
split h h1 h'
-> split h' h2 h3
-> disjoint h1 h'
-> disjoint h2 h3
-> disjoint (join h1 h2) h3.
Axiom disjoint_assoc2 : forall h h1 h' h2 h3,
split h h' h1
-> split h' h2 h3
-> disjoint h' h1
-> disjoint h2 h3
-> disjoint h2 (join h3 h1).
Axiom split_join : forall h1 h2,
split (join h1 h2) h1 h2.
Axiom split_disjoint : forall h h1 h2 h' h3,
split h h1 h'
-> split h' h2 h3
-> disjoint h1 h'
-> disjoint h2 h3
-> disjoint h1 h2.
Axiom disjoint_assoc3 : forall h h1 h2 h3,
disjoint h h2
-> split h h1 h3
-> disjoint h1 h3
-> disjoint h3 h2.
End splitting.
Global Hint Immediate disjoint_comm split_comm : core.
Global Hint Immediate split_empty_bwd disjoint_hemp disjoint_hemp' split_assoc1 split_assoc2 : core.
Global Hint Immediate disjoint_assoc1 disjoint_assoc2 split_join split_disjoint disjoint_assoc3 : core.
End S.
Module M : S.
Definition fmap (A B : Type) := A -> option B.
Definition empty A B : fmap A B := fun _ => None.
Section decide.
Variable P : Prop.
Lemma decided : inhabited (sum P (~P)).
Proof.
destruct (classic P).
constructor; exact (inl _ H).
constructor; exact (inr _ H).
Qed.
Definition decide : sum P (~P) :=
epsilon decided (fun _ => True).
End decide.
Definition add A B (m : fmap A B) (k : A) (v : B) : fmap A B :=
fun k' => if decide (k' = k) then Some v else m k'.
Definition remove A B (m : fmap A B) (k : A) : fmap A B :=
fun k' => if decide (k' = k) then None else m k'.
Definition join A B (m1 m2 : fmap A B) : fmap A B :=
fun k => match m1 k with
| None => m2 k
| x => x
end.
Definition merge A B f (m1 m2 : fmap A B) : fmap A B :=
fun k => f (m1 k) (m2 k).
Definition lookup A B (m : fmap A B) (k : A) := m k.
Definition restrict A B (P : A -> Prop) (m : fmap A B) : fmap A B :=
fun k => if decide (P k) then m k else None.
Definition includes A B (m1 m2 : fmap A B) :=
forall k v, m1 k = Some v -> m2 k = Some v.
Definition dom A B (m : fmap A B) : set A := fun x => m x <> None.
Theorem fmap_ext : forall A B (m1 m2 : fmap A B),
(forall k, lookup m1 k = lookup m2 k)
-> m1 = m2.
Proof.
intros; extensionality k; auto.
Qed.
Theorem lookup_empty : forall A B (k : A), lookup (empty B) k = None.
Proof.
auto.
Qed.
Theorem includes_lookup : forall A B (m m' : fmap A B) k v,
lookup m k = Some v
-> includes m m'
-> lookup m' k = Some v.
Proof.
auto.
Qed.
Theorem includes_add : forall A B (m m' : fmap A B) k v,
includes m m'
-> includes (add m k v) (add m' k v).
Proof.
unfold includes, add; intuition.
destruct (decide (k0 = k)); auto.
Qed.
Theorem lookup_add_eq : forall A B (m : fmap A B) k1 k2 v,
k1 = k2
-> lookup (add m k1 v) k2 = Some v.
Proof.
unfold lookup, add; intuition.
destruct (decide (k2 = k1)); try tauto.
congruence.
Qed.
Theorem lookup_add_ne : forall A B (m : fmap A B) k k' v,
k' <> k
-> lookup (add m k v) k' = lookup m k'.
Proof.
unfold lookup, add; intuition.
destruct (decide (k' = k)); intuition.
Qed.
Theorem lookup_remove_eq : forall A B (m : fmap A B) k1 k2,
k1 = k2
-> lookup (remove m k1) k2 = None.
Proof.
unfold lookup, remove; intuition.
destruct (decide (k2 = k1)); try tauto.
congruence.
Qed.
Theorem lookup_remove_ne : forall A B (m : fmap A B) k k',
k' <> k
-> lookup (remove m k) k' = lookup m k'.
Proof.
unfold lookup, remove; intuition.
destruct (decide (k' = k)); try tauto.
Qed.
Theorem lookup_join1 : forall A B (m1 m2 : fmap A B) k,
k \in dom m1
-> lookup (join m1 m2) k = lookup m1 k.
Proof.
unfold lookup, join, dom, In; intros.
destruct (m1 k); congruence.
Qed.
Theorem lookup_join2 : forall A B (m1 m2 : fmap A B) k,
~k \in dom m1
-> lookup (join m1 m2) k = lookup m2 k.
Proof.
unfold lookup, join, dom, In; intros.
destruct (m1 k); try congruence.
exfalso; apply H; congruence.
Qed.
Theorem join_comm : forall A B (m1 m2 : fmap A B),
dom m1 \cap dom m2 = constant nil
-> join m1 m2 = join m2 m1.
Proof.
intros; apply fmap_ext; unfold join, lookup; intros.
apply (f_equal (fun f => f k)) in H.
unfold dom, intersection, constant in H; simpl in H.
destruct (m1 k), (m2 k); auto.
exfalso; rewrite <- H.
intuition congruence.
Qed.
Theorem join_assoc : forall A B (m1 m2 m3 : fmap A B),
join (join m1 m2) m3 = join m1 (join m2 m3).
Proof.
intros; apply fmap_ext; unfold join, lookup; intros.
destruct (m1 k); auto.
Qed.
Theorem lookup_merge : forall A B f (m1 m2 : fmap A B) k,
lookup (merge f m1 m2) k = f (m1 k) (m2 k).
Proof.
auto.
Qed.
Theorem merge_empty1 : forall A B f (m : fmap A B),
(forall x, f None x = x)
-> merge f (@empty _ _) m = m.
Proof.
intros; apply fmap_ext; unfold lookup, merge; auto.
Qed.
Theorem merge_empty2 : forall A B f (m : fmap A B),
(forall x, f x None = x)
-> merge f m (@empty _ _) = m.
Proof.
intros; apply fmap_ext; unfold lookup, merge; auto.
Qed.
Theorem merge_empty1_alt : forall A B f (m : fmap A B),
(forall x, f None x = None)
-> merge f (@empty _ _) m = @empty _ _.
Proof.
intros; apply fmap_ext; unfold lookup, merge; auto.
Qed.
Theorem merge_empty2_alt : forall A B f (m : fmap A B),
(forall x, f x None = None)
-> merge f m (@empty _ _) = @empty _ _.
Proof.
intros; apply fmap_ext; unfold lookup, merge; auto.
Qed.
Theorem merge_add1 : forall A B f (m1 m2 : fmap A B) k v,
(forall x y, f (Some x) y = None -> False)
-> ~k \in dom m1
-> merge f (add m1 k v) m2 = match f (Some v) (lookup m2 k) with
| None => merge f m1 m2
| Some v => add (merge f m1 m2) k v
end.
Proof.
intros; apply fmap_ext; unfold lookup, merge, add; intros.
destruct (decide (k0 = k)); auto; subst.
case_eq (f (Some v) (m2 k)); intros.
case_eq (decide (k = k)); congruence.
exfalso; eauto.
case_eq (f (Some v) (m2 k)); intros.
destruct (decide (k0 = k)); congruence.
auto.
Qed.
Theorem merge_add2 : forall A B f (m1 m2 : fmap A B) k v,
(forall x y, f x (Some y) = None -> False)
-> ~k \in dom m2
-> merge f m1 (add m2 k v) = match f (lookup m1 k) (Some v) with
| None => merge f m1 m2
| Some v => add (merge f m1 m2) k v
end.
Proof.
intros; apply fmap_ext; unfold lookup, merge, add; intros.
destruct (decide (k0 = k)); auto; subst.
case_eq (f (m1 k) (Some v)); intros.
case_eq (decide (k = k)); congruence.
exfalso; eauto.
case_eq (f (m1 k) (Some v)); intros.
destruct (decide (k0 = k)); congruence.
auto.
Qed.
Theorem merge_add1_alt : forall A B f (m1 m2 : fmap A B) k v,
(forall x y, f (Some x) (Some y) = None -> False)
-> ~k \in dom m1
-> k \in dom m2
-> merge f (add m1 k v) m2 = match f (Some v) (lookup m2 k) with
| None => merge f m1 m2
| Some v => add (merge f m1 m2) k v
end.
Proof.
intros; apply fmap_ext; unfold lookup, merge, add; intros.
destruct (decide (k0 = k)); auto; subst.
case_eq (f (Some v) (m2 k)); intros.
case_eq (decide (k = k)); congruence.
case_eq (m2 k); intros.
rewrite H3 in H2.
exfalso; eauto.
congruence.
case_eq (f (Some v) (m2 k)); intros.
destruct (decide (k0 = k)); congruence.
auto.
Qed.
Theorem empty_includes : forall A B (m : fmap A B), includes (empty (A := A) B) m.
Proof.
unfold includes, empty; intuition congruence.
Qed.
Theorem dom_empty : forall A B, dom (empty (A := A) B) = constant nil.
Proof.
unfold dom, empty; intros; sets idtac.
Qed.
Theorem dom_add : forall A B (m : fmap A B) (k : A) (v : B),
dom (add m k v) = constant (k :: nil) \cup dom m.
Proof.
unfold dom, add; simpl; intros.
sets ltac:(simpl in *; try match goal with
| [ _ : context[if ?E then _ else _] |- _ ] => destruct E
end; intuition congruence).
Qed.
Lemma lookup_split : forall A B (m : fmap A B) k v k' v',
lookup (add m k v) k' = Some v'
-> (k' <> k /\ lookup m k' = Some v') \/ (k' = k /\ v' = v).
Proof.
unfold lookup, add; simpl; intros.
destruct (decide (k' = k)); intuition congruence.
Qed.
Theorem lookup_restrict_true : forall A B (P : A -> Prop) (m : fmap A B) k,
P k
-> lookup (restrict P m) k = lookup m k.
Proof.
unfold lookup, restrict; intros.
destruct (decide (P k)); tauto.
Qed.
Theorem lookup_restrict_false : forall A B (P : A -> Prop) (m : fmap A B) k,
~P k
-> lookup (restrict P m) k = None.
Proof.
unfold lookup, restrict; intros.
destruct (decide (P k)); tauto.
Qed.
Theorem lookup_restrict_true_fwd : forall A B (P : A -> Prop) (m : fmap A B) k v,
lookup (restrict P m) k = Some v
-> P k.
Proof.
unfold lookup, restrict; intros.
destruct (decide (P k)); intuition congruence.
Qed.
Lemma includes_intro : forall K V (m1 m2 : fmap K V),
(forall k v, lookup m1 k = Some v -> lookup m2 k = Some v)
-> includes m1 m2.
Proof.
auto.
Qed.
Lemma lookup_Some_dom : forall K V (m : fmap K V) k v,
lookup m k = Some v
-> k \in dom m.
Proof.
unfold lookup, dom, In; congruence.
Qed.
Lemma lookup_None_dom : forall K V (m : fmap K V) k,
lookup m k = None
-> ~ k \in dom m.
Proof.
unfold lookup, dom, In; congruence.
Qed.
Section splitting.
Variables K V : Type.
Notation "$0" := (@empty K V).
Notation "m $+ ( k , v )" := (add m k v) (at level 50, left associativity).
Infix "$-" := remove (at level 50, left associativity).
Infix "$++" := join (at level 50, left associativity).
Infix "$?" := lookup (at level 50, no associativity).
Infix "$<=" := includes (at level 90).
Definition disjoint (h1 h2 : fmap K V) : Prop :=
forall a, h1 $? a <> None
-> h2 $? a <> None
-> False.
Definition split (h h1 h2 : fmap K V) : Prop :=
h = h1 $++ h2.
Hint Extern 2 (_ <> _) => congruence : core.
Ltac splt := unfold disjoint, split, join, lookup in *; intros; subst;
try match goal with
| [ |- @eq (fmap K V) _ _ ] => let a := fresh "a" in extensionality a; simpl
end;
repeat match goal with
| [ a : K, H : forall a : K, _ |- _ ] => specialize (H a)
end;
repeat match goal with
| [ H : _ |- _ ] => rewrite H
| [ |- context[match ?E with Some _ => _ | None => _ end] ] => destruct E
| [ _ : context[match ?E with Some _ => _ | None => _ end] |- _ ] => destruct E
end; eauto; try solve [ exfalso; eauto ].
Lemma split_empty_fwd : forall h h1,
split h h1 $0
-> h = h1.
Proof.
splt.
Qed.
Lemma split_empty_fwd' : forall h h1,
split h $0 h1
-> h = h1.
Proof.
splt.
Qed.
Lemma split_empty_bwd : forall h,
split h h $0.
Proof.
splt.
Qed.
Lemma split_empty_bwd' : forall h,
split h $0 h.
Proof.
splt.
Qed.
Lemma disjoint_hemp : forall h,
disjoint h $0.
Proof.
splt.
Qed.
Lemma disjoint_hemp' : forall h,
disjoint $0 h.
Proof.
splt.
Qed.
Lemma disjoint_comm : forall h1 h2,
disjoint h1 h2
-> disjoint h2 h1.
Proof.
splt.
Qed.
Lemma split_comm : forall h h1 h2,
disjoint h1 h2
-> split h h1 h2
-> split h h2 h1.
Proof.
splt.
Qed.
Hint Immediate disjoint_comm split_comm : core.
Lemma split_assoc1 : forall h h1 h' h2 h3,
split h h1 h'
-> split h' h2 h3
-> split h (join h1 h2) h3.
Proof.
splt.
Qed.
Lemma split_assoc2' : forall h h1 h' h2 h3,
split h h1 h'
-> split h' h2 h3
-> disjoint h1 h'
-> disjoint h2 h3
-> split h h2 (join h3 h1).
Proof.
splt.
Qed.
Lemma split_assoc2 : forall h h1 h' h2 h3,
split h h' h1
-> split h' h2 h3
-> disjoint h' h1
-> disjoint h2 h3
-> split h h2 (join h3 h1).
Proof.
intros; eapply split_assoc2'; eauto.
Qed.
Lemma disjoint_assoc1 : forall h h1 h' h2 h3,
split h h1 h'
-> split h' h2 h3
-> disjoint h1 h'
-> disjoint h2 h3
-> disjoint (join h1 h2) h3.
Proof.
splt.
Qed.
Lemma disjoint_assoc2 : forall h h1 h' h2 h3,
split h h' h1
-> split h' h2 h3
-> disjoint h' h1
-> disjoint h2 h3
-> disjoint h2 (join h3 h1).
Proof.
splt.
Qed.
Lemma split_join : forall h1 h2,
split (join h1 h2) h1 h2.
Proof.
splt.
Qed.
Lemma split_disjoint : forall h h1 h2 h' h3,
split h h1 h'
-> split h' h2 h3
-> disjoint h1 h'
-> disjoint h2 h3
-> disjoint h1 h2.
Proof.
splt.
Qed.
Lemma disjoint_assoc3 : forall h h1 h2 h3,
disjoint h h2
-> split h h1 h3
-> disjoint h1 h3
-> disjoint h3 h2.
Proof.
splt.
Qed.
End splitting.
End M.
Export M.