frap/SessionTypes.v

151 lines
4 KiB
Coq

(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
* Chapter 20: Session Types
* Author: Adam Chlipala
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
Require Import Frap FunctionalExtensionality MessagesAndRefinement.
Set Implicit Arguments.
Set Asymmetric Patterns.
(** * Defining the Type System *)
Inductive type :=
| TSend (ch : channel) (A : Set) (t : A -> type)
| TRecv (ch : channel) (A : Set) (t : A -> type)
| TDone.
Delimit Scope st_scope with st.
Bind Scope st_scope with type.
Notation "!!! ch ( x : A ) ; k" := (TSend ch (fun x : A => k)%st) (right associativity, at level 45, ch at level 0, x at level 0) : st_scope.
Notation "??? ch ( x : A ) ; k" := (TRecv ch (fun x : A => k)%st) (right associativity, at level 45, ch at level 0, x at level 0) : st_scope.
Inductive hasty : proc -> type -> Prop :=
| HtSend : forall ch (A : Set) (v : A) k t,
hasty k (t v)
-> hasty (Send ch v k) (TSend ch t)
| HtRecv : forall ch (A : Set) (k : A -> _) t,
(forall v, hasty (k v) (t v))
-> hasty (Recv ch k) (TRecv ch t)
| HtDone :
hasty Done TDone.
(** * Examples of Typed Processes *)
(* Recall our first example from last chapter. *)
Definition addN (k : nat) (input output : channel) : proc :=
??input(n : nat);
!!output(n + k);
Done.
Ltac hasty := simplify; repeat (constructor; simplify).
Theorem addN_typed : forall k input output,
hasty (addN k input output) (???input(_ : nat); !!!output(_ : nat); TDone).
Proof.
hasty.
Qed.
(** * Complementing Types *)
Fixpoint complement (t : type) : type :=
match t with
| TSend ch _ t1 => TRecv ch (fun v => complement (t1 v))
| TRecv ch _ t1 => TSend ch (fun v => complement (t1 v))
| TDone => TDone
end.
Definition add2_client (input output : channel) : proc :=
!!input(42);
??output(_ : nat);
Done.
Theorem add2_client_typed : forall input output,
hasty (add2_client input output) (complement (???input(_ : nat); !!!output(_ : nat); TDone)).
Proof.
hasty.
Qed.
(** * Parallel execution preserves the existence of complementary session types. *)
Definition trsys_of pr := {|
Initial := {pr};
Step := lstepSilent
|}.
(* Note: here we force silent steps, so that all channel communication is
* internal. *)
Hint Constructors hasty.
Lemma input_typed : forall pr ch A v pr',
lstep pr (Input {| Channel := ch; TypeOf := A; Value := v |}) pr'
-> forall t, hasty pr t
-> exists k, pr = Recv ch k /\ pr' = k v.
Proof.
induct 1; invert 1; eauto.
Qed.
Lemma output_typed : forall pr ch A v pr',
lstep pr (Output {| Channel := ch; TypeOf := A; Value := v |}) pr'
-> forall t, hasty pr t
-> exists k, pr = Send ch v k /\ pr' = k.
Proof.
induct 1; invert 1; eauto.
Qed.
Lemma complementarity_forever : forall pr1 pr2 t,
hasty pr1 t
-> hasty pr2 (complement t)
-> invariantFor (trsys_of (pr1 || pr2))
(fun pr => exists pr1' pr2' t',
pr = pr1' || pr2'
/\ hasty pr1' t'
/\ hasty pr2' (complement t')).
Proof.
simplify.
apply invariant_induction; simplify.
propositional; subst.
eauto 6.
clear pr1 pr2 t H H0.
first_order; subst.
invert H2.
invert H6; invert H0.
invert H6; invert H1.
eapply input_typed in H4; eauto.
eapply output_typed in H5; eauto.
first_order; subst.
invert H0.
invert H1.
eauto 7.
eapply input_typed in H5; eauto.
eapply output_typed in H4; eauto.
first_order; subst.
invert H0.
invert H1.
eauto 10.
Qed.
Theorem no_deadlock : forall pr1 pr2 t,
hasty pr1 t
-> hasty pr2 (complement t)
-> invariantFor (trsys_of (pr1 || pr2))
(fun pr => pr = (Done || Done)
\/ exists l' pr', lstep pr l' pr').
Proof.
simplify.
eapply invariant_weaken.
eapply complementarity_forever; eauto.
clear pr1 pr2 t H H0.
simplify; first_order; subst.
invert H0; invert H1; simplify; eauto.
Unshelve.
assumption.
Qed.