mirror of
https://github.com/achlipala/frap.git
synced 2024-11-10 00:07:51 +00:00
151 lines
4 KiB
Coq
151 lines
4 KiB
Coq
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
|
* Chapter 20: Session Types
|
|
* Author: Adam Chlipala
|
|
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
|
|
|
Require Import Frap FunctionalExtensionality MessagesAndRefinement.
|
|
|
|
Set Implicit Arguments.
|
|
Set Asymmetric Patterns.
|
|
|
|
|
|
(** * Defining the Type System *)
|
|
|
|
Inductive type :=
|
|
| TSend (ch : channel) (A : Set) (t : A -> type)
|
|
| TRecv (ch : channel) (A : Set) (t : A -> type)
|
|
| TDone.
|
|
|
|
Delimit Scope st_scope with st.
|
|
Bind Scope st_scope with type.
|
|
Notation "!!! ch ( x : A ) ; k" := (TSend ch (fun x : A => k)%st) (right associativity, at level 45, ch at level 0, x at level 0) : st_scope.
|
|
Notation "??? ch ( x : A ) ; k" := (TRecv ch (fun x : A => k)%st) (right associativity, at level 45, ch at level 0, x at level 0) : st_scope.
|
|
|
|
Inductive hasty : proc -> type -> Prop :=
|
|
| HtSend : forall ch (A : Set) (v : A) k t,
|
|
hasty k (t v)
|
|
-> hasty (Send ch v k) (TSend ch t)
|
|
| HtRecv : forall ch (A : Set) (k : A -> _) t,
|
|
(forall v, hasty (k v) (t v))
|
|
-> hasty (Recv ch k) (TRecv ch t)
|
|
| HtDone :
|
|
hasty Done TDone.
|
|
|
|
|
|
(** * Examples of Typed Processes *)
|
|
|
|
(* Recall our first example from last chapter. *)
|
|
Definition addN (k : nat) (input output : channel) : proc :=
|
|
??input(n : nat);
|
|
!!output(n + k);
|
|
Done.
|
|
|
|
Ltac hasty := simplify; repeat (constructor; simplify).
|
|
|
|
Theorem addN_typed : forall k input output,
|
|
hasty (addN k input output) (???input(_ : nat); !!!output(_ : nat); TDone).
|
|
Proof.
|
|
hasty.
|
|
Qed.
|
|
|
|
|
|
(** * Complementing Types *)
|
|
|
|
Fixpoint complement (t : type) : type :=
|
|
match t with
|
|
| TSend ch _ t1 => TRecv ch (fun v => complement (t1 v))
|
|
| TRecv ch _ t1 => TSend ch (fun v => complement (t1 v))
|
|
| TDone => TDone
|
|
end.
|
|
|
|
Definition add2_client (input output : channel) : proc :=
|
|
!!input(42);
|
|
??output(_ : nat);
|
|
Done.
|
|
|
|
Theorem add2_client_typed : forall input output,
|
|
hasty (add2_client input output) (complement (???input(_ : nat); !!!output(_ : nat); TDone)).
|
|
Proof.
|
|
hasty.
|
|
Qed.
|
|
|
|
|
|
(** * Parallel execution preserves the existence of complementary session types. *)
|
|
|
|
Definition trsys_of pr := {|
|
|
Initial := {pr};
|
|
Step := lstepSilent
|
|
|}.
|
|
(* Note: here we force silent steps, so that all channel communication is
|
|
* internal. *)
|
|
|
|
Hint Constructors hasty.
|
|
|
|
Lemma input_typed : forall pr ch A v pr',
|
|
lstep pr (Input {| Channel := ch; TypeOf := A; Value := v |}) pr'
|
|
-> forall t, hasty pr t
|
|
-> exists k, pr = Recv ch k /\ pr' = k v.
|
|
Proof.
|
|
induct 1; invert 1; eauto.
|
|
Qed.
|
|
|
|
Lemma output_typed : forall pr ch A v pr',
|
|
lstep pr (Output {| Channel := ch; TypeOf := A; Value := v |}) pr'
|
|
-> forall t, hasty pr t
|
|
-> exists k, pr = Send ch v k /\ pr' = k.
|
|
Proof.
|
|
induct 1; invert 1; eauto.
|
|
Qed.
|
|
|
|
Lemma complementarity_forever : forall pr1 pr2 t,
|
|
hasty pr1 t
|
|
-> hasty pr2 (complement t)
|
|
-> invariantFor (trsys_of (pr1 || pr2))
|
|
(fun pr => exists pr1' pr2' t',
|
|
pr = pr1' || pr2'
|
|
/\ hasty pr1' t'
|
|
/\ hasty pr2' (complement t')).
|
|
Proof.
|
|
simplify.
|
|
apply invariant_induction; simplify.
|
|
|
|
propositional; subst.
|
|
eauto 6.
|
|
|
|
clear pr1 pr2 t H H0.
|
|
first_order; subst.
|
|
invert H2.
|
|
|
|
invert H6; invert H0.
|
|
invert H6; invert H1.
|
|
eapply input_typed in H4; eauto.
|
|
eapply output_typed in H5; eauto.
|
|
first_order; subst.
|
|
invert H0.
|
|
invert H1.
|
|
eauto 7.
|
|
eapply input_typed in H5; eauto.
|
|
eapply output_typed in H4; eauto.
|
|
first_order; subst.
|
|
invert H0.
|
|
invert H1.
|
|
eauto 10.
|
|
Qed.
|
|
|
|
Theorem no_deadlock : forall pr1 pr2 t,
|
|
hasty pr1 t
|
|
-> hasty pr2 (complement t)
|
|
-> invariantFor (trsys_of (pr1 || pr2))
|
|
(fun pr => pr = (Done || Done)
|
|
\/ exists l' pr', lstep pr l' pr').
|
|
Proof.
|
|
simplify.
|
|
eapply invariant_weaken.
|
|
eapply complementarity_forever; eauto.
|
|
|
|
clear pr1 pr2 t H H0.
|
|
simplify; first_order; subst.
|
|
invert H0; invert H1; simplify; eauto.
|
|
Unshelve.
|
|
assumption.
|
|
Qed.
|