mirror of
https://github.com/achlipala/frap.git
synced 2025-01-07 16:44:14 +00:00
SessionTypes: changed to make choices explicitly dependent on message contents
This commit is contained in:
parent
0875f52b12
commit
af4a09c047
1 changed files with 31 additions and 158 deletions
189
SessionTypes.v
189
SessionTypes.v
|
@ -3,7 +3,7 @@
|
|||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
Require Import Frap MessagesAndRefinement.
|
||||
Require Import Frap FunctionalExtensionality MessagesAndRefinement.
|
||||
|
||||
Set Implicit Arguments.
|
||||
Set Asymmetric Patterns.
|
||||
|
@ -12,40 +12,24 @@ Set Asymmetric Patterns.
|
|||
(** * Defining the Type System *)
|
||||
|
||||
Inductive type :=
|
||||
| TSend (ch : channel) (A : Set) (t : type)
|
||||
| TRecv (ch : channel) (A : Set) (t : type)
|
||||
| TDone
|
||||
|
||||
| InternalChoice (t1 t2 : type)
|
||||
| ExternalChoice (t1 t2 : type).
|
||||
| TSend (ch : channel) (A : Set) (t : A -> type)
|
||||
| TRecv (ch : channel) (A : Set) (t : A -> type)
|
||||
| TDone.
|
||||
|
||||
Delimit Scope st_scope with st.
|
||||
Bind Scope st_scope with type.
|
||||
Notation "!!! ch ( A ) ; k" := (TSend ch A k%st) (right associativity, at level 45, ch at level 0) : st_scope.
|
||||
Notation "??? ch ( A ) ; k" := (TRecv ch A k%st) (right associativity, at level 45, ch at level 0) : st_scope.
|
||||
Infix "|?|" := InternalChoice (at level 40) : st_scope.
|
||||
Infix "?|?" := ExternalChoice (at level 40) : st_scope.
|
||||
Notation "!!! ch ( x : A ) ; k" := (TSend ch (fun x : A => k)%st) (right associativity, at level 45, ch at level 0, x at level 0) : st_scope.
|
||||
Notation "??? ch ( x : A ) ; k" := (TRecv ch (fun x : A => k)%st) (right associativity, at level 45, ch at level 0, x at level 0) : st_scope.
|
||||
|
||||
Inductive hasty : proc -> type -> Prop :=
|
||||
| HtSend : forall ch (A : Set) (v : A) k t,
|
||||
hasty k t
|
||||
-> hasty (Send ch v k) (TSend ch A t)
|
||||
| HtRecv : forall ch (A : Set) (k : A -> _) t (v : A),
|
||||
(forall v, hasty (k v) t)
|
||||
-> hasty (Recv ch k) (TRecv ch A t)
|
||||
hasty k (t v)
|
||||
-> hasty (Send ch v k) (TSend ch t)
|
||||
| HtRecv : forall ch (A : Set) (k : A -> _) t,
|
||||
(forall v, hasty (k v) (t v))
|
||||
-> hasty (Recv ch k) (TRecv ch t)
|
||||
| HtDone :
|
||||
hasty Done TDone
|
||||
|
||||
| HtInternalChoice1 : forall pr t1 t2,
|
||||
hasty pr t1
|
||||
-> hasty pr (InternalChoice t1 t2)
|
||||
| HtInternalChoice2 : forall pr t1 t2,
|
||||
hasty pr t2
|
||||
-> hasty pr (InternalChoice t1 t2)
|
||||
| HtExternalChoice : forall pr t1 t2,
|
||||
hasty pr t1
|
||||
-> hasty pr t2
|
||||
-> hasty pr (ExternalChoice t1 t2).
|
||||
hasty Done TDone.
|
||||
|
||||
|
||||
(** * Examples of Typed Processes *)
|
||||
|
@ -59,7 +43,7 @@ Definition addN (k : nat) (input output : channel) : proc :=
|
|||
Ltac hasty := simplify; repeat (constructor; simplify).
|
||||
|
||||
Theorem addN_typed : forall k input output,
|
||||
hasty (addN k input output) (???input(nat); !!!output(nat); TDone).
|
||||
hasty (addN k input output) (???input(_ : nat); !!!output(_ : nat); TDone).
|
||||
Proof.
|
||||
hasty.
|
||||
Qed.
|
||||
|
@ -69,12 +53,9 @@ Qed.
|
|||
|
||||
Fixpoint complement (t : type) : type :=
|
||||
match t with
|
||||
| TSend ch A t1 => TRecv ch A (complement t1)
|
||||
| TRecv ch A t1 => TSend ch A (complement t1)
|
||||
| TSend ch _ t1 => TRecv ch (fun v => complement (t1 v))
|
||||
| TRecv ch _ t1 => TSend ch (fun v => complement (t1 v))
|
||||
| TDone => TDone
|
||||
|
||||
| InternalChoice t1 t2 => ExternalChoice (complement t1) (complement t2)
|
||||
| ExternalChoice t1 t2 => InternalChoice (complement t1) (complement t2)
|
||||
end.
|
||||
|
||||
Definition add2_client (input output : channel) : proc :=
|
||||
|
@ -83,8 +64,7 @@ Definition add2_client (input output : channel) : proc :=
|
|||
Done.
|
||||
|
||||
Theorem add2_client_typed : forall input output,
|
||||
input <> output
|
||||
-> hasty (add2_client input output) (complement (???input(nat); !!!output(nat); TDone)).
|
||||
hasty (add2_client input output) (complement (???input(_ : nat); !!!output(_ : nat); TDone)).
|
||||
Proof.
|
||||
hasty.
|
||||
Qed.
|
||||
|
@ -101,43 +81,12 @@ Definition trsys_of pr := {|
|
|||
|
||||
Hint Constructors hasty.
|
||||
|
||||
Lemma hasty_not_NewChannel : forall chs pr t,
|
||||
hasty (NewChannel chs pr) t
|
||||
-> False.
|
||||
Proof.
|
||||
induct 1; auto.
|
||||
Qed.
|
||||
|
||||
Lemma hasty_not_BlockChannel : forall ch pr t,
|
||||
hasty (BlockChannel ch pr) t
|
||||
-> False.
|
||||
Proof.
|
||||
induct 1; auto.
|
||||
Qed.
|
||||
|
||||
Lemma hasty_not_Dup : forall pr t,
|
||||
hasty (Dup pr) t
|
||||
-> False.
|
||||
Proof.
|
||||
induct 1; auto.
|
||||
Qed.
|
||||
|
||||
Lemma hasty_not_Par : forall pr1 pr2 t,
|
||||
hasty (pr1 || pr2) t
|
||||
-> False.
|
||||
Proof.
|
||||
induct 1; auto.
|
||||
Qed.
|
||||
|
||||
Hint Immediate hasty_not_NewChannel hasty_not_BlockChannel hasty_not_Dup hasty_not_Par.
|
||||
|
||||
Lemma input_typed : forall pr ch A v pr',
|
||||
lstep pr (Input {| Channel := ch; TypeOf := A; Value := v |}) pr'
|
||||
-> forall t, hasty pr t
|
||||
-> exists k, pr = Recv ch k /\ pr' = k v.
|
||||
Proof.
|
||||
induct 1; simplify; try solve [ exfalso; eauto ].
|
||||
induct H; eauto.
|
||||
induct 1; invert 1; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma output_typed : forall pr ch A v pr',
|
||||
|
@ -145,22 +94,7 @@ Lemma output_typed : forall pr ch A v pr',
|
|||
-> forall t, hasty pr t
|
||||
-> exists k, pr = Send ch v k /\ pr' = k.
|
||||
Proof.
|
||||
induct 1; simplify; try solve [ exfalso; eauto ].
|
||||
induct H; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma complementarity_rendezvous : forall ch (A : Set) (k1 : A -> _) t,
|
||||
hasty (Recv ch k1) t
|
||||
-> forall (v : A) k2, hasty (Send ch v k2) (complement t)
|
||||
-> exists t', hasty (k1 v) t' /\ hasty k2 (complement t').
|
||||
Proof.
|
||||
induct 1; invert 1; simplify; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma complement_inverse : forall t,
|
||||
t = complement (complement t).
|
||||
Proof.
|
||||
induct t; simplify; equality.
|
||||
induct 1; invert 1; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma complementarity_forever : forall pr1 pr2 t,
|
||||
|
@ -182,73 +116,20 @@ Proof.
|
|||
first_order; subst.
|
||||
invert H2.
|
||||
|
||||
invert H6; try solve [ exfalso; eauto ].
|
||||
|
||||
invert H6; try solve [ exfalso; eauto ].
|
||||
|
||||
invert H6; invert H0.
|
||||
invert H6; invert H1.
|
||||
eapply input_typed in H4; eauto.
|
||||
eapply output_typed in H5; eauto.
|
||||
first_order; subst.
|
||||
eapply complementarity_rendezvous in H0; eauto.
|
||||
first_order.
|
||||
|
||||
invert H0.
|
||||
invert H1.
|
||||
eauto 7.
|
||||
eapply input_typed in H5; eauto.
|
||||
eapply output_typed in H4; eauto.
|
||||
first_order; subst.
|
||||
rewrite complement_inverse in H0.
|
||||
eapply complementarity_rendezvous in H1; eauto.
|
||||
first_order.
|
||||
rewrite complement_inverse in H.
|
||||
first_order.
|
||||
Qed.
|
||||
|
||||
Lemma notstuck_send : forall pr1 t,
|
||||
hasty pr1 t
|
||||
-> forall pr2, hasty pr2 (complement t)
|
||||
-> forall ch (A : Set) (v : A) pr1', lstep pr1 (Output {| Channel := ch; Value := v |}) pr1'
|
||||
-> exists pr2', lstep pr2 (Input {| Channel := ch; Value := v |}) pr2'.
|
||||
Proof.
|
||||
induct 1; invert 1; simplify; eauto;
|
||||
match goal with
|
||||
| [ H : lstep _ _ _ |- _ ] => invert H; eauto
|
||||
end.
|
||||
Qed.
|
||||
|
||||
Lemma notstuck_nosilent : forall pr1 t,
|
||||
hasty pr1 t
|
||||
-> forall pr1', lstep pr1 Silent pr1'
|
||||
-> False.
|
||||
Proof.
|
||||
induct 1; invert 1; simplify; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma notstuck_recv : forall pr1 t,
|
||||
hasty pr1 t
|
||||
-> forall pr2, hasty pr2 (complement t)
|
||||
-> forall ch (A : Set) (v : A) pr1', lstep pr1 (Input {| Channel := ch; Value := v |}) pr1'
|
||||
-> exists (v' : A) pr2', lstep pr2 (Output {| Channel := ch; Value := v' |}) pr2'.
|
||||
Proof.
|
||||
induct 1; invert 1; simplify; eauto;
|
||||
match goal with
|
||||
| [ H : lstep _ _ _ |- _ ] => invert H; eauto
|
||||
end.
|
||||
Qed.
|
||||
|
||||
Lemma one_thread_progress : forall pr t,
|
||||
hasty pr t
|
||||
-> pr = Done \/ exists l pr', lstep pr l pr'.
|
||||
Proof.
|
||||
induct 1; first_order; subst; eauto.
|
||||
Unshelve.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Lemma hasty_Done : forall t,
|
||||
hasty Done t
|
||||
-> forall pr, hasty pr (complement t)
|
||||
-> pr = Done.
|
||||
Proof.
|
||||
induct 1; invert 1; eauto.
|
||||
invert H0.
|
||||
invert H1.
|
||||
eauto 10.
|
||||
Qed.
|
||||
|
||||
Theorem no_deadlock : forall pr1 pr2 t,
|
||||
|
@ -261,18 +142,10 @@ Proof.
|
|||
simplify.
|
||||
eapply invariant_weaken.
|
||||
eapply complementarity_forever; eauto.
|
||||
|
||||
clear pr1 pr2 t H H0.
|
||||
simplify; first_order; subst.
|
||||
specialize (one_thread_progress H2); first_order; subst.
|
||||
|
||||
eapply hasty_Done in H2; eauto.
|
||||
equality.
|
||||
|
||||
cases x2.
|
||||
exfalso; eauto using notstuck_nosilent.
|
||||
right.
|
||||
cases a; cases m.
|
||||
eapply notstuck_send in H1; [ | eauto | eauto ].
|
||||
first_order; eauto.
|
||||
eapply notstuck_recv in H1; [ | eauto | eauto ].
|
||||
first_order; eauto.
|
||||
invert H0; invert H1; simplify; eauto.
|
||||
Unshelve.
|
||||
assumption.
|
||||
Qed.
|
||||
|
|
Loading…
Reference in a new issue