Compare commits
2 commits
b444304a89
...
97dc43c792
Author | SHA1 | Date | |
---|---|---|---|
97dc43c792 | |||
bc30320eef |
7 changed files with 83 additions and 36 deletions
BIN
assignments/hwk03/2a.png
Normal file
BIN
assignments/hwk03/2a.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 86 KiB |
|
@ -22,12 +22,12 @@ function [h, m, Q] = EMG(x, k, epochs, flag)
|
|||
Q = zeros(epochs*2,1); % vector that can hold complete data log-likelihood after each E and M step
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Initialise cluster means using k-means
|
||||
% TODO: Initialise cluster means using k-means
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
[~, ~, ~, D] = kmeans(x, k);
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Determine the b values for all data points
|
||||
% TODO: Determine the b values for all data points
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
for i = 1:num_data
|
||||
row = D(i,:);
|
||||
|
@ -36,7 +36,7 @@ function [h, m, Q] = EMG(x, k, epochs, flag)
|
|||
end
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Initialize pi's (mixing coefficients)
|
||||
% TODO: Initialize pi's (mixing coefficients)
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
pi = zeros(k, 1);
|
||||
for i = 1:k
|
||||
|
@ -44,8 +44,8 @@ function [h, m, Q] = EMG(x, k, epochs, flag)
|
|||
end
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Initialize the covariance matrix estimate
|
||||
% further modifications will need to be made when doing 2(d)
|
||||
% TODO: Initialize the covariance matrix estimate
|
||||
% further modifications will need to be made when doing 2(d)
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
m = zeros(k, dim);
|
||||
for i = 1:k
|
||||
|
@ -63,25 +63,21 @@ function [h, m, Q] = EMG(x, k, epochs, flag)
|
|||
[h] = E_step(x, h, pi, m, S, k);
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Store the value of the complete log-likelihood function
|
||||
% TODO: Store the value of the complete log-likelihood function
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
L = 0;
|
||||
for i = 1:num_data
|
||||
for j = 1:k
|
||||
prior = mvnpdf(x, m(j, :), S(:, :, j));
|
||||
L = L + h(i, j) * (log(pi(j)) + log(prior(j)));
|
||||
end
|
||||
end
|
||||
Q(2*n - 1) = Q_step(x, m, S, k, pi, h);
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%
|
||||
% M-step
|
||||
%%%%%%%%%%%%%%%%
|
||||
fprintf('M-step, epoch #%d\n', n);
|
||||
[Q, S, m] = M_step(x, h, S, k, flag);
|
||||
[S, m, pi] = M_step(x, h, S, k, flag);
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% TODO: Store the value of the complete log-likelihood function
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
Q(2*n) = Q_step(x, m, S, k, pi, h);
|
||||
end
|
||||
|
||||
|
||||
|
|
|
@ -14,17 +14,17 @@ function [h] = E_step(x, h, pi, m, S, k)
|
|||
[num_data, ~] = size(x);
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% TODO: perform E-step of EM algorithm
|
||||
% perform E-step of EM algorithm
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
parts = zeros(num_data, k);
|
||||
|
||||
for j = 1:k
|
||||
parts(:, j) = pi(j) * mvnpdf(x, m(j, :), S(:, :, j));
|
||||
for i = 1:k
|
||||
parts(:, i) = pi(i) * mvnpdf(x, m(i, :), S(:, :, i));
|
||||
end
|
||||
|
||||
s = sum(parts);
|
||||
for i = 1:num_data
|
||||
h(i, :) = parts(i, :) ./ s;
|
||||
for j = 1:num_data
|
||||
h(j, :) = parts(j, :) ./ s;
|
||||
end
|
||||
|
||||
end
|
|
@ -20,25 +20,51 @@ function [S, m, pi] = M_step(x, h, S, k, flag)
|
|||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% update mixing coefficients
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
pi = zeros(k, 1);
|
||||
for i = 1:num_data
|
||||
row = h(i, :);
|
||||
maxValue = max(row);
|
||||
maxIdx = find(row == maxValue);
|
||||
pi(maxIdx) = pi(maxIdx) + 1;
|
||||
N_i = zeros(k, 1);
|
||||
m = zeros(k, dim);
|
||||
for i = 1:k
|
||||
N_i(i) = sum(h(:, i));
|
||||
for j = 1:num_data
|
||||
m(i, :) = m(i, :) + h(j, i) * x(j, :);
|
||||
end
|
||||
end
|
||||
pi = N_i / num_data;
|
||||
|
||||
for i = 1:k
|
||||
m(i, :) = m(i, :) ./ N_i(i);
|
||||
end
|
||||
pi = pi ./ num_data;
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% TODO: update cluster means
|
||||
% update cluster means
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
% m = zeros(k, dim);
|
||||
% m = h' * x ./ N_i;
|
||||
% for i = 1:k
|
||||
% m(i, :) = sum(h(:, i) .* x(i, :)) / N_i(i);
|
||||
% end
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% TODO: Calculate the covariance matrix estimate
|
||||
% further modifications will need to be made when doing 2(d)
|
||||
% Calculate the covariance matrix estimate
|
||||
% further modifications will need to be made when doing 2(d)
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
S = zeros(dim, dim, k) + eps;
|
||||
for i = 1:k
|
||||
s = zeros(dim, dim);
|
||||
for j = 1:num_data
|
||||
s = s + h(j, i) * (x(j, :) - m(i, :))' * (x(j, :) - m(i, :));
|
||||
end
|
||||
s = s / N_i(i);
|
||||
% s = (x - m(i, :))' * ((x - m(i, :)) .* h(:, i)) / N_i(i);
|
||||
|
||||
% % MAKE IT SYMMETRIC https://stackoverflow.com/a/38730499
|
||||
% S(:, :, i) = (s + s') / 2;
|
||||
% https://www.mathworks.com/matlabcentral/answers/366140-eig-gives-a-negative-eigenvalue-for-a-positive-semi-definite-matrix#answer_290270
|
||||
s = (s + s') / 2;
|
||||
% https://www.mathworks.com/matlabcentral/answers/57411-matlab-sometimes-produce-a-covariance-matrix-error-with-non-postive-semidefinite#answer_69524
|
||||
[V, D] = eig(s);
|
||||
s = V * max(D, eps) / V;
|
||||
|
||||
S(:, :, i) = s;
|
||||
end
|
||||
|
||||
end
|
|
@ -26,25 +26,26 @@ function [] = Problem2()
|
|||
figure();
|
||||
for k = 4:4:12
|
||||
fprintf("k=%d\n", k);
|
||||
|
||||
|
||||
% call EM on data
|
||||
[h, m, Q] = EMG(stadium_x, k, epochs, false);
|
||||
|
||||
|
||||
% get compressed version of image
|
||||
[~,class_index] = max(h,[],2);
|
||||
compress = m(class_index,:);
|
||||
|
||||
|
||||
% 2(a), plot compressed image
|
||||
subplot(3,2,index)
|
||||
imagesc(permute(reshape(compress, [width, height, depth]),[2 1 3]))
|
||||
index = index + 1;
|
||||
|
||||
|
||||
% 2(b), plot complete data likelihood curves
|
||||
subplot(3,2,index)
|
||||
x = 1:size(Q);
|
||||
c = repmat([1 0 0; 0 1 0], length(x)/2, 1);
|
||||
scatter(x,Q,20,c);
|
||||
index = index + 1;
|
||||
pause;
|
||||
end
|
||||
shg
|
||||
|
||||
|
@ -69,6 +70,7 @@ function [] = Problem2()
|
|||
% TODO: plot goldy image after using clusters from k-means
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% begin code here
|
||||
[~, ~, ~, D] = kmeans(goldy_x, k);
|
||||
|
||||
% end code here
|
||||
shg
|
||||
|
|
11
assignments/hwk03/Q_step.m
Normal file
11
assignments/hwk03/Q_step.m
Normal file
|
@ -0,0 +1,11 @@
|
|||
function [LL] = Q_step(x, m, S, k, pi, h)
|
||||
[num_data, ~] = size(x);
|
||||
LL = 0;
|
||||
for i = 1:k
|
||||
N = mvnpdf(x, m(i, :), S(:, :, i));
|
||||
for j = 1:num_data
|
||||
LL = LL + h(j, i) * (log(pi(i) + eps) + log(N(j) + eps));
|
||||
end
|
||||
end
|
||||
end
|
||||
|
|
@ -66,4 +66,16 @@ Updates:
|
|||
&= - sum_t (r^t-y^t) (v_1 frac(diff z^t_1, diff w_j) + v_2 frac(diff z^t_2, diff w_j)) \
|
||||
&= - sum_t (r^t-y^t) (x^t_j v_1 cases(0 "if" ww dot xx < 0, 1 "otherwise") + x^t_j v_2 (1 - tanh^2 (ww dot xx))) \
|
||||
&= - sum_t (r^t-y^t) x^t_j (v_1 cases(0 "if" ww dot xx < 0, 1 "otherwise") + v_2 (1 - tanh^2 (ww dot xx))) \
|
||||
$
|
||||
$
|
||||
|
||||
#pagebreak()
|
||||
|
||||
= Problem 2a + 2b
|
||||
|
||||
#image("2a.png")
|
||||
|
||||
= Problem 2c
|
||||
|
||||
= Problem 2d
|
||||
|
||||
MLE of $Sigma_i$
|
Loading…
Reference in a new issue