extra credit
This commit is contained in:
parent
e71821fb79
commit
3ce70531db
1 changed files with 37 additions and 7 deletions
|
@ -15,8 +15,6 @@ author: |
|
||||||
\newcommand{\now}[1]{\textcolor{blue}{#1}}
|
\newcommand{\now}[1]{\textcolor{blue}{#1}}
|
||||||
\newcommand{\todo}[0]{\textcolor{red}{\textbf{TODO}}}
|
\newcommand{\todo}[0]{\textcolor{red}{\textbf{TODO}}}
|
||||||
|
|
||||||
[ 3 8 9 ]
|
|
||||||
|
|
||||||
## Reflection and Refraction
|
## Reflection and Refraction
|
||||||
|
|
||||||
1. \c{Consider a sphere $S$ made of solid glass ($\eta$ = 1.5) that has radius
|
1. \c{Consider a sphere $S$ made of solid glass ($\eta$ = 1.5) that has radius
|
||||||
|
@ -186,7 +184,7 @@ author: |
|
||||||
$z$-axis, the rotation matrix would look like:
|
$z$-axis, the rotation matrix would look like:
|
||||||
|
|
||||||
$$
|
$$
|
||||||
M =
|
M_1 =
|
||||||
\begin{bmatrix}
|
\begin{bmatrix}
|
||||||
\cos(23.5^\circ) & \sin(23.5^\circ) & 0 & 0 \\
|
\cos(23.5^\circ) & \sin(23.5^\circ) & 0 & 0 \\
|
||||||
-\sin(23.5^\circ) & \cos(23.5^\circ) & 0 & 0 \\
|
-\sin(23.5^\circ) & \cos(23.5^\circ) & 0 & 0 \\
|
||||||
|
@ -205,15 +203,15 @@ author: |
|
||||||
$y$-axis, so the matrix looks like:
|
$y$-axis, so the matrix looks like:
|
||||||
|
|
||||||
$$
|
$$
|
||||||
M' =
|
M_2 =
|
||||||
M^{-1}
|
M_1^{-1}
|
||||||
\begin{bmatrix}
|
\begin{bmatrix}
|
||||||
\cos(\theta(t)) & 0 & \sin(\theta(t)) & 0 \\
|
\cos(\theta(t)) & 0 & \sin(\theta(t)) & 0 \\
|
||||||
0 & 1 & 0 & 0 \\
|
0 & 1 & 0 & 0 \\
|
||||||
-\sin(\theta(t)) & 0 & \cos(\theta(t)) & 0 \\
|
-\sin(\theta(t)) & 0 & \cos(\theta(t)) & 0 \\
|
||||||
0 & 0 & 0 & 1 \\
|
0 & 0 & 0 & 1 \\
|
||||||
\end{bmatrix}
|
\end{bmatrix}
|
||||||
M
|
M_1
|
||||||
$$
|
$$
|
||||||
|
|
||||||
c. \c{[5 points extra credit] What series of rotation matrices could you use
|
c. \c{[5 points extra credit] What series of rotation matrices could you use
|
||||||
|
@ -222,7 +220,39 @@ author: |
|
||||||
|
|
||||||
In the image, the globe itself does not rotate, but I'm going to assume it
|
In the image, the globe itself does not rotate, but I'm going to assume it
|
||||||
revolves around the sun at a different angle $\phi(t)$. The solution here
|
revolves around the sun at a different angle $\phi(t)$. The solution here
|
||||||
would be to
|
would be to rotate the globe _after_ the translation to whatever its position
|
||||||
|
is.
|
||||||
|
|
||||||
|
- First, rotate the globe to the $23.5^\circ$ tilt, using $M_2$ as described
|
||||||
|
above.
|
||||||
|
|
||||||
|
- Then, translate the globe to its position, which I'm going to assume is
|
||||||
|
$(r, 0, 0)$.
|
||||||
|
|
||||||
|
$$
|
||||||
|
M_3 =
|
||||||
|
\begin{bmatrix}
|
||||||
|
1 & 0 & 0 & r \\
|
||||||
|
0 & 1 & 0 & 0 \\
|
||||||
|
0 & 0 & 1 & 0 \\
|
||||||
|
0 & 0 & 0 & 1 \\
|
||||||
|
\end{bmatrix}
|
||||||
|
$$
|
||||||
|
|
||||||
|
- Finally, rotate by $\phi(t)$ around the $y$-axis _after_ the translation,
|
||||||
|
using:
|
||||||
|
|
||||||
|
$$
|
||||||
|
M_4 =
|
||||||
|
\begin{bmatrix}
|
||||||
|
\cos(\phi(t)) & 0 & \sin(\phi(t)) & r \\
|
||||||
|
0 & 1 & 0 & 0 \\
|
||||||
|
-\sin(\phi(t)) & 0 & \cos(\phi(t)) & 0 \\
|
||||||
|
0 & 0 & 0 & 1 \\
|
||||||
|
\end{bmatrix}
|
||||||
|
$$
|
||||||
|
|
||||||
|
The resulting transformation matrix is $M = \boxed{M_4 M_3 M_2}$.
|
||||||
|
|
||||||
## The Camera/Viewing Transformation
|
## The Camera/Viewing Transformation
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue