2016-04-07 21:28:19 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2016 Floris van Doorn. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
Authors: Floris van Doorn
|
|
|
|
|
-/
|
|
|
|
|
|
2016-03-03 17:48:31 +00:00
|
|
|
|
import .LES_of_homotopy_groups homotopy.connectedness homotopy.homotopy_group homotopy.join
|
2016-03-24 20:14:44 +00:00
|
|
|
|
open eq is_trunc pointed is_conn is_equiv fiber equiv trunc nat chain_complex prod fin algebra
|
2016-03-03 17:48:31 +00:00
|
|
|
|
group trunc_index function join pushout
|
2016-03-03 22:24:34 +00:00
|
|
|
|
|
2016-03-03 03:14:32 +00:00
|
|
|
|
namespace nat
|
|
|
|
|
open sigma sum
|
|
|
|
|
definition eq_even_or_eq_odd (n : ℕ) : (Σk, 2 * k = n) ⊎ (Σk, 2 * k + 1 = n) :=
|
|
|
|
|
begin
|
|
|
|
|
induction n with n IH,
|
|
|
|
|
{ exact inl ⟨0, idp⟩},
|
|
|
|
|
{ induction IH with H H: induction H with k p: induction p,
|
|
|
|
|
{ exact inr ⟨k, idp⟩},
|
|
|
|
|
{ refine inl ⟨k+1, idp⟩}}
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition rec_on_even_odd {P : ℕ → Type} (n : ℕ) (H : Πk, P (2 * k)) (H2 : Πk, P (2 * k + 1))
|
|
|
|
|
: P n :=
|
|
|
|
|
begin
|
|
|
|
|
cases eq_even_or_eq_odd n with v v: induction v with k p: induction p,
|
|
|
|
|
{ exact H k},
|
|
|
|
|
{ exact H2 k}
|
|
|
|
|
end
|
2016-02-17 23:27:26 +00:00
|
|
|
|
|
2016-03-03 03:14:32 +00:00
|
|
|
|
end nat
|
|
|
|
|
open nat
|
2016-02-17 23:27:26 +00:00
|
|
|
|
|
|
|
|
|
namespace is_conn
|
|
|
|
|
|
2016-03-03 03:14:32 +00:00
|
|
|
|
local attribute comm_group.to_group [coercion]
|
|
|
|
|
local attribute is_equiv_tinverse [instance]
|
|
|
|
|
|
|
|
|
|
theorem is_equiv_π_of_is_connected.{u} {A B : pType.{u}} (n k : ℕ) (f : A →* B)
|
2016-03-06 16:26:15 +00:00
|
|
|
|
[H : is_conn_fun n f] (H2 : k ≤ n) : is_equiv (π→[k] f) :=
|
2016-03-03 03:14:32 +00:00
|
|
|
|
begin
|
2016-04-07 21:28:33 +00:00
|
|
|
|
cases k with k,
|
2016-03-03 03:14:32 +00:00
|
|
|
|
{ /- k = 0 -/
|
2016-03-06 16:26:15 +00:00
|
|
|
|
change (is_equiv (trunc_functor 0 f)), apply is_equiv_trunc_functor_of_is_conn_fun,
|
|
|
|
|
refine is_conn_fun_of_le f (zero_le_of_nat n)},
|
2016-03-03 03:14:32 +00:00
|
|
|
|
{ /- k > 0 even -/
|
2016-04-07 21:28:33 +00:00
|
|
|
|
have H2' : k ≤ n, from le.trans !self_le_succ H2,
|
2016-03-03 03:14:32 +00:00
|
|
|
|
exact
|
|
|
|
|
@is_equiv_of_trivial _
|
2016-04-07 21:28:33 +00:00
|
|
|
|
(LES_of_homotopy_groups f) _
|
|
|
|
|
(is_exact_LES_of_homotopy_groups f (k, 2))
|
|
|
|
|
(is_exact_LES_of_homotopy_groups f (succ k, 0))
|
|
|
|
|
(@is_contr_HG_fiber_of_is_connected A B k n f H H2')
|
|
|
|
|
(@is_contr_HG_fiber_of_is_connected A B (succ k) n f H H2)
|
|
|
|
|
(@pgroup_of_group _ (group_LES_of_homotopy_groups f k 0) idp)
|
|
|
|
|
(@pgroup_of_group _ (group_LES_of_homotopy_groups f k 1) idp)
|
|
|
|
|
(homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun f (k, 0)))},
|
2016-03-03 03:14:32 +00:00
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
theorem is_surjective_π_of_is_connected.{u} {A B : pType.{u}} (n : ℕ) (f : A →* B)
|
2016-03-06 16:26:15 +00:00
|
|
|
|
[H : is_conn_fun n f] : is_surjective (π→[n + 1] f) :=
|
2016-04-07 21:28:33 +00:00
|
|
|
|
@is_surjective_of_trivial _
|
|
|
|
|
(LES_of_homotopy_groups f) _
|
|
|
|
|
(is_exact_LES_of_homotopy_groups f (n, 2))
|
|
|
|
|
(@is_contr_HG_fiber_of_is_connected A B n n f H !le.refl)
|
|
|
|
|
|
2016-03-03 03:14:32 +00:00
|
|
|
|
|
2016-04-07 21:28:33 +00:00
|
|
|
|
-- TODO: move or remove
|
2016-03-03 22:24:34 +00:00
|
|
|
|
|
2016-03-03 17:48:31 +00:00
|
|
|
|
definition join_empty_right [constructor] (A : Type) : join A empty ≃ A :=
|
|
|
|
|
begin
|
|
|
|
|
fapply equiv.MK,
|
2016-03-24 20:14:44 +00:00
|
|
|
|
{ intro x, induction x with a o a o,
|
|
|
|
|
{ exact a },
|
|
|
|
|
{ exact empty.elim o },
|
|
|
|
|
{ exact empty.elim o } },
|
|
|
|
|
{ exact pushout.inl },
|
2016-03-03 17:48:31 +00:00
|
|
|
|
{ intro a, reflexivity},
|
2016-03-24 20:14:44 +00:00
|
|
|
|
{ intro x, induction x with a o a o,
|
|
|
|
|
{ reflexivity },
|
|
|
|
|
{ exact empty.elim o },
|
|
|
|
|
{ exact empty.elim o } }
|
2016-03-03 17:48:31 +00:00
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition natural_square2 {A B X : Type} {f : A → X} {g : B → X} (h : Πa b, f a = g b)
|
|
|
|
|
{a a' : A} {b b' : B} (p : a = a') (q : b = b')
|
|
|
|
|
: square (ap f p) (ap g q) (h a b) (h a' b') :=
|
|
|
|
|
by induction p; induction q; exact hrfl
|
|
|
|
|
|
|
|
|
|
section
|
|
|
|
|
open sphere sphere_index
|
|
|
|
|
|
|
|
|
|
definition add_plus_one_minus_one (n : ℕ₋₁) : n +1+ -1 = n := idp
|
|
|
|
|
definition add_plus_one_succ (n m : ℕ₋₁) : n +1+ (m.+1) = (n +1+ m).+1 := idp
|
|
|
|
|
definition minus_one_add_plus_one (n : ℕ₋₁) : -1 +1+ n = n :=
|
|
|
|
|
begin induction n with n IH, reflexivity, exact ap succ IH end
|
|
|
|
|
definition succ_add_plus_one (n m : ℕ₋₁) : (n.+1) +1+ m = (n +1+ m).+1 :=
|
|
|
|
|
begin induction m with m IH, reflexivity, exact ap succ IH end
|
|
|
|
|
|
|
|
|
|
end
|
|
|
|
|
|
2016-02-17 23:27:26 +00:00
|
|
|
|
end is_conn
|