2017-03-31 18:31:56 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2017 Jeremy Avigad. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
Authors: Jeremy Avigad
|
|
|
|
|
-/
|
2017-03-31 20:36:35 +00:00
|
|
|
|
import types.trunc .logic
|
|
|
|
|
open funext eq trunc is_trunc logic
|
2017-03-31 18:31:56 +00:00
|
|
|
|
|
|
|
|
|
definition set (X : Type) := X → Prop
|
|
|
|
|
|
|
|
|
|
namespace set
|
|
|
|
|
|
|
|
|
|
variable {X : Type}
|
|
|
|
|
|
|
|
|
|
/- membership and subset -/
|
|
|
|
|
|
|
|
|
|
definition mem (x : X) (a : set X) := a x
|
|
|
|
|
infix ∈ := mem
|
|
|
|
|
notation a ∉ b := ¬ mem a b
|
|
|
|
|
|
|
|
|
|
theorem ext {a b : set X} (H : ∀x, x ∈ a ↔ x ∈ b) : a = b :=
|
|
|
|
|
eq_of_homotopy (take x, propext (H x))
|
|
|
|
|
|
|
|
|
|
definition subset (a b : set X) : Prop := Prop.mk (∀⦃x⦄, x ∈ a → x ∈ b) _
|
|
|
|
|
infix ⊆ := subset
|
|
|
|
|
|
|
|
|
|
definition superset (s t : set X) : Prop := t ⊆ s
|
|
|
|
|
infix ⊇ := superset
|
|
|
|
|
|
|
|
|
|
theorem subset.refl (a : set X) : a ⊆ a := take x, assume H, H
|
|
|
|
|
|
|
|
|
|
theorem subset.trans {a b c : set X} (subab : a ⊆ b) (subbc : b ⊆ c) : a ⊆ c :=
|
|
|
|
|
take x, assume ax, subbc (subab ax)
|
|
|
|
|
|
|
|
|
|
theorem subset.antisymm {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b :=
|
|
|
|
|
ext (λ x, iff.intro (λ ina, h₁ ina) (λ inb, h₂ inb))
|
|
|
|
|
|
|
|
|
|
-- an alterantive name
|
|
|
|
|
theorem eq_of_subset_of_subset {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b :=
|
|
|
|
|
subset.antisymm h₁ h₂
|
|
|
|
|
|
|
|
|
|
theorem mem_of_subset_of_mem {s₁ s₂ : set X} {a : X} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ :=
|
|
|
|
|
assume h₁ h₂, h₁ _ h₂
|
|
|
|
|
|
|
|
|
|
/- empty set -/
|
|
|
|
|
|
2017-03-31 20:36:35 +00:00
|
|
|
|
definition empty : set X := λx, false
|
2017-03-31 18:31:56 +00:00
|
|
|
|
notation `∅` := empty
|
|
|
|
|
|
|
|
|
|
theorem not_mem_empty (x : X) : ¬ (x ∈ ∅) :=
|
|
|
|
|
assume H : x ∈ ∅, H
|
|
|
|
|
|
2017-03-31 20:36:35 +00:00
|
|
|
|
theorem mem_empty_eq (x : X) : x ∈ ∅ = false := rfl
|
2017-03-31 18:31:56 +00:00
|
|
|
|
|
|
|
|
|
theorem eq_empty_of_forall_not_mem {s : set X} (H : ∀ x, x ∉ s) : s = ∅ :=
|
|
|
|
|
ext (take x, iff.intro
|
|
|
|
|
(assume xs, absurd xs (H x))
|
2017-03-31 20:36:35 +00:00
|
|
|
|
(assume xe, absurd xe (not_mem_empty x)))
|
2017-03-31 18:31:56 +00:00
|
|
|
|
|
|
|
|
|
theorem ne_empty_of_mem {s : set X} {x : X} (H : x ∈ s) : s ≠ ∅ :=
|
2017-03-31 20:36:35 +00:00
|
|
|
|
begin intro Hs, rewrite Hs at H, apply not_mem_empty x H end
|
2017-03-31 18:31:56 +00:00
|
|
|
|
|
|
|
|
|
theorem empty_subset (s : set X) : ∅ ⊆ s :=
|
2017-03-31 20:36:35 +00:00
|
|
|
|
take x, assume H, empty.elim H
|
2017-03-31 18:31:56 +00:00
|
|
|
|
|
|
|
|
|
theorem eq_empty_of_subset_empty {s : set X} (H : s ⊆ ∅) : s = ∅ :=
|
|
|
|
|
subset.antisymm H (empty_subset s)
|
|
|
|
|
|
|
|
|
|
theorem subset_empty_iff (s : set X) : s ⊆ ∅ ↔ s = ∅ :=
|
|
|
|
|
iff.intro eq_empty_of_subset_empty (take xeq, by rewrite xeq; apply subset.refl ∅)
|
|
|
|
|
|
2017-03-31 20:36:35 +00:00
|
|
|
|
/- universal set -/
|
|
|
|
|
|
|
|
|
|
definition univ : set X := λx, true
|
|
|
|
|
|
|
|
|
|
theorem mem_univ (x : X) : x ∈ univ := trivial
|
|
|
|
|
|
|
|
|
|
theorem mem_univ_eq (x : X) : x ∈ univ = true := rfl
|
|
|
|
|
|
|
|
|
|
theorem empty_ne_univ [h : inhabited X] : (empty : set X) ≠ univ :=
|
|
|
|
|
assume H : empty = univ,
|
|
|
|
|
absurd (mem_univ (inhabited.value h)) (eq.rec_on H (not_mem_empty (arbitrary X)))
|
|
|
|
|
|
|
|
|
|
theorem subset_univ (s : set X) : s ⊆ univ := λ x H, unit.star
|
|
|
|
|
|
|
|
|
|
theorem eq_univ_of_univ_subset {s : set X} (H : univ ⊆ s) : s = univ :=
|
|
|
|
|
eq_of_subset_of_subset (subset_univ s) H
|
|
|
|
|
|
|
|
|
|
theorem eq_univ_of_forall {s : set X} (H : ∀ x, x ∈ s) : s = univ :=
|
|
|
|
|
ext (take x, iff.intro (assume H', unit.star) (assume H', H x))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/- set-builder notation -/
|
|
|
|
|
|
|
|
|
|
-- {x : X | P}
|
|
|
|
|
definition set_of (P : X → Prop) : set X := P
|
|
|
|
|
notation `{` binder ` | ` r:(scoped:1 P, set_of P) `}` := r
|
|
|
|
|
|
|
|
|
|
-- {x ∈ s | P}
|
|
|
|
|
definition sep (P : X → Prop) (s : set X) : set X := λx, x ∈ s ∧ P x
|
|
|
|
|
notation `{` binder ` ∈ ` s ` | ` r:(scoped:1 p, sep p s) `}` := r
|
|
|
|
|
|
|
|
|
|
/- insert -/
|
|
|
|
|
|
|
|
|
|
definition insert (x : X) (a : set X) : set X := {y : X | y = x ∨ y ∈ a}
|
|
|
|
|
|
|
|
|
|
-- '{x, y, z}
|
|
|
|
|
notation `'{`:max a:(foldr `, ` (x b, insert x b) ∅) `}`:0 := a
|
|
|
|
|
|
|
|
|
|
theorem subset_insert (x : X) (a : set X) : a ⊆ insert x a :=
|
|
|
|
|
take y, assume ys, or.inr ys
|
|
|
|
|
|
|
|
|
|
theorem mem_insert (x : X) (s : set X) : x ∈ insert x s :=
|
|
|
|
|
or.inl rfl
|
|
|
|
|
|
|
|
|
|
theorem mem_insert_of_mem {x : X} {s : set X} (y : X) : x ∈ s → x ∈ insert y s :=
|
|
|
|
|
assume h, or.inr h
|
|
|
|
|
|
|
|
|
|
theorem eq_or_mem_of_mem_insert {x a : X} {s : set X} : x ∈ insert a s → x = a ∨ x ∈ s :=
|
|
|
|
|
assume h, h
|
2017-03-31 18:31:56 +00:00
|
|
|
|
|
|
|
|
|
end set
|