Spectral/move_to_lib.hlean

133 lines
4.2 KiB
Text
Raw Normal View History

-- definitions, theorems and attributes which should be moved to files in the HoTT library
import homotopy.sphere2 homotopy.cofiber homotopy.wedge
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group
is_trunc function sphere
namespace group
open is_trunc
2016-11-03 19:34:06 +00:00
-- some extra instances for type class inference
-- definition is_homomorphism_comm_homomorphism [instance] {G G' : AbGroup} (φ : G →g G')
-- : @is_homomorphism G G' (@ab_group.to_group _ (AbGroup.struct G))
-- (@ab_group.to_group _ (AbGroup.struct G')) φ :=
-- homomorphism.struct φ
-- definition is_homomorphism_comm_homomorphism1 [instance] {G G' : AbGroup} (φ : G →g G')
-- : @is_homomorphism G G' _
-- (@ab_group.to_group _ (AbGroup.struct G')) φ :=
-- homomorphism.struct φ
-- definition is_homomorphism_comm_homomorphism2 [instance] {G G' : AbGroup} (φ : G →g G')
-- : @is_homomorphism G G' (@ab_group.to_group _ (AbGroup.struct G)) _ φ :=
-- homomorphism.struct φ
end group open group
namespace pi -- move to types.arrow
definition pmap_eq_idp {X Y : Type*} (f : X →* Y) :
pmap_eq (λx, idpath (f x)) !idp_con⁻¹ = idpath f :=
begin
cases f with f p, esimp [pmap_eq],
refine apd011 (apd011 pmap.mk) !eq_of_homotopy_idp _,
induction Y with Y y0, esimp at *, induction p, esimp, exact sorry
end
definition pfunext [constructor] (X Y : Type*) : ppmap X (Ω Y) ≃* Ω (ppmap X Y) :=
begin
fapply pequiv_of_equiv,
{ fapply equiv.MK: esimp,
{ intro f, fapply pmap_eq,
{ intro x, exact f x },
{ exact (respect_pt f)⁻¹ }},
{ intro p, fapply pmap.mk,
{ intro x, exact ap010 pmap.to_fun p x },
{ note z := apd respect_pt p,
note z2 := square_of_pathover z,
refine eq_of_hdeg_square z2 ⬝ !ap_constant }},
{ intro p, exact sorry },
{ intro p, exact sorry }},
{ apply pmap_eq_idp}
end
end pi open pi
namespace eq
-- definition natural_square_tr_eq {A B : Type} {a a' : A} {f g : A → B}
-- (p : f ~ g) (q : a = a') : natural_square p q = square_of_pathover (apd p q) :=
-- idp
end eq open eq
namespace pointed
-- /- the pointed type of (unpointed) dependent maps -/
-- definition pupi [constructor] {A : Type} (P : A → Type*) : Type* :=
-- pointed.mk' (Πa, P a)
-- definition loop_pupi_commute {A : Type} (B : A → Type*) : Ω(pupi B) ≃* pupi (λa, Ω (B a)) :=
-- pequiv_of_equiv eq_equiv_homotopy rfl
-- definition equiv_pupi_right {A : Type} {P Q : A → Type*} (g : Πa, P a ≃* Q a)
-- : pupi P ≃* pupi Q :=
-- pequiv_of_equiv (pi_equiv_pi_right g)
-- begin esimp, apply eq_of_homotopy, intros a, esimp, exact (respect_pt (g a)) end
end pointed open pointed
2016-09-17 23:11:04 +00:00
namespace fiber
2016-10-13 00:07:18 +00:00
definition ap1_ppoint_phomotopy {A B : Type*} (f : A →* B)
: Ω→ (ppoint f) ∘* pfiber_loop_space f ~* ppoint (Ω→ f) :=
begin
exact sorry
end
definition pfiber_equiv_of_square_ppoint {A B C D : Type*} {f : A →* B} {g : C →* D}
(h : A ≃* C) (k : B ≃* D) (s : k ∘* f ~* g ∘* h)
: ppoint g ∘* pfiber_equiv_of_square h k s ~* h ∘* ppoint f :=
sorry
2016-09-17 23:11:04 +00:00
end fiber
namespace circle
/-
Suppose for `f, g : A -> B` I prove a homotopy `H : f ~ g` by induction on the element in `A`.
And suppose `p : a = a'` is a path constructor in `A`.
Then `natural_square_tr H p` has type `square (H a) (H a') (ap f p) (ap g p)` and is equal
to the square which defined H on the path constructor
-/
definition natural_square_elim_loop {A : Type} {f g : S¹ → A} (p : f base = g base)
(q : square p p (ap f loop) (ap g loop))
: natural_square (circle.rec p (eq_pathover q)) loop = q :=
begin
-- refine !natural_square_eq ⬝ _,
refine ap square_of_pathover !rec_loop ⬝ _,
exact to_right_inv !eq_pathover_equiv_square q
end
end circle
namespace sphere
-- definition constant_sphere_map_sphere {n m : } (H : n < m) (f : S* n →* S* m) :
-- f ~* pconst (S* n) (S* m) :=
-- begin
-- assert H : is_contr (Ω[n] (S* m)),
-- { apply homotopy_group_sphere_le, },
-- apply phomotopy_of_eq,
-- apply eq_of_fn_eq_fn !psphere_pmap_pequiv,
-- apply @is_prop.elim
-- end
end sphere