Spectral/homotopy/spectrum.hlean

262 lines
12 KiB
Text
Raw Normal View History

/-
Copyright (c) 2016 Michael Shulman. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Michael Shulman
-/
import types.int types.pointed2 types.trunc homotopy.susp algebra.homotopy_group
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index
/-----------------------------------------
Stuff that should go in other files
-----------------------------------------/
namespace sigma
definition sigma_equiv_sigma_left' [constructor] {A A' : Type} {B : A' → Type} (Hf : A ≃ A') : (Σa, B (Hf a)) ≃ (Σa', B a') :=
sigma_equiv_sigma Hf (λa, erfl)
end sigma
open sigma
namespace pointed
definition pequiv_compose {A B C : Type*} (g : B ≃* C) (f : A ≃* B) : A ≃* C :=
pequiv_of_pmap (g ∘* f) (is_equiv_compose f g)
infixr ` ∘*ᵉ `:60 := pequiv_compose
definition pmap.sigma_char [constructor] {A B : Type*} : (A →* B) ≃ Σ(f : A → B), f pt = pt :=
begin
fapply equiv.MK : intros f,
{ exact ⟨to_fun f , resp_pt f⟩ },
all_goals cases f with f p,
{ exact pmap.mk f p },
all_goals reflexivity
end
definition phomotopy.sigma_char [constructor] {A B : Type*} (f g : A →* B) : (f ~* g) ≃ Σ(p : f ~ g), p pt ⬝ resp_pt g = resp_pt f :=
begin
fapply equiv.MK : intros h,
{ exact ⟨h , to_homotopy_pt h⟩ },
all_goals cases h with h p,
{ exact phomotopy.mk h p },
all_goals reflexivity
end
definition pmap_eq_equiv {A B : Type*} (f g : A →* B) : (f = g) ≃ (f ~* g) :=
calc (f = g) ≃ pmap.sigma_char f = pmap.sigma_char g
: eq_equiv_fn_eq pmap.sigma_char f g
... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), pathover (λh, h pt = pt) (resp_pt f) p (resp_pt g)
: sigma_eq_equiv _ _
... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), resp_pt f = ap (λh, h pt) p ⬝ resp_pt g
: sigma_equiv_sigma_right (λp, pathover_eq_equiv_Fl p (resp_pt f) (resp_pt g))
... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), resp_pt f = ap10 p pt ⬝ resp_pt g
: sigma_equiv_sigma_right (λp, equiv_eq_closed_right _ (whisker_right (ap_eq_ap10 p _) _))
... ≃ Σ(p : pmap.to_fun f ~ pmap.to_fun g), resp_pt f = p pt ⬝ resp_pt g
: sigma_equiv_sigma_left' eq_equiv_homotopy
... ≃ Σ(p : pmap.to_fun f ~ pmap.to_fun g), p pt ⬝ resp_pt g = resp_pt f
: sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _)
... ≃ (f ~* g) : phomotopy.sigma_char f g
definition loop_pmap_commute (A B : Type*) : Ω(ppmap A B) ≃* (ppmap A (Ω B)) :=
pequiv_of_equiv
(calc Ω(ppmap A B) /- ≃ (pconst A B = pconst A B) : erfl
... -/ ≃ (pconst A B ~* pconst A B) : pmap_eq_equiv _ _
... ≃ Σ(p : pconst A B ~ pconst A B), p pt ⬝ rfl = rfl : phomotopy.sigma_char
... /- ≃ Σ(f : A → Ω B), f pt = pt : erfl
... -/ ≃ (A →* Ω B) : pmap.sigma_char)
(by reflexivity)
definition ppcompose_left {A B C : Type*} (g : B →* C) : ppmap A B →* ppmap A C :=
pmap.mk (pcompose g) (eq_of_phomotopy (phomotopy.mk (λa, resp_pt g) (idp_con _)⁻¹))
definition is_equiv_ppcompose_left [instance] {A B C : Type*} (g : B →* C) [H : is_equiv g] : is_equiv (@ppcompose_left A B C g) :=
begin
fapply is_equiv.adjointify,
{ exact (ppcompose_left (pequiv_of_pmap g H)⁻¹ᵉ*) },
all_goals (intros f; esimp; apply eq_of_phomotopy),
{ exact calc g ∘* ((pequiv_of_pmap g H)⁻¹ᵉ* ∘* f) ~* (g ∘* (pequiv_of_pmap g H)⁻¹ᵉ*) ∘* f : passoc
... ~* pid _ ∘* f : pwhisker_right f (pright_inv (pequiv_of_pmap g H))
... ~* f : pid_comp f },
{ exact calc (pequiv_of_pmap g H)⁻¹ᵉ* ∘* (g ∘* f) ~* ((pequiv_of_pmap g H)⁻¹ᵉ* ∘* g) ∘* f : passoc
... ~* pid _ ∘* f : pwhisker_right f (pleft_inv (pequiv_of_pmap g H))
... ~* f : pid_comp f }
end
definition equiv_ppcompose_left {A B C : Type*} (g : B ≃* C) : ppmap A B ≃* ppmap A C :=
pequiv_of_pmap (ppcompose_left g) _
definition pfiber_loop_space {A B : Type*} (f : A →* B) : pfiber (Ω→ f) ≃* Ω (pfiber f) :=
pequiv_of_equiv
(calc pfiber (Ω→ f) ≃ Σ(p : Point A = Point A), ap1 f p = rfl : (fiber.sigma_char (ap1 f) (Point Ω B))
... ≃ Σ(p : Point A = Point A), (respect_pt f) = ap f p ⬝ (respect_pt f) : (sigma_equiv_sigma_right (λp,
calc (ap1 f p = rfl) ≃ !respect_pt⁻¹ ⬝ (ap f p ⬝ !respect_pt) = rfl : equiv_eq_closed_left _ (con.assoc _ _ _)
... ≃ ap f p ⬝ (respect_pt f) = (respect_pt f) : eq_equiv_inv_con_eq_idp
... ≃ (respect_pt f) = ap f p ⬝ (respect_pt f) : eq_equiv_eq_symm))
... ≃ fiber.mk (Point A) (respect_pt f) = fiber.mk pt (respect_pt f) : fiber_eq_equiv
... ≃ Ω (pfiber f) : erfl)
(begin cases f with f p, cases A with A a, cases B with B b, esimp at p, esimp at f, induction p, reflexivity end)
definition pfiber_equiv_of_phomotopy {A B : Type*} {f g : A →* B} (h : f ~* g) : pfiber f ≃* pfiber g :=
begin
fapply pequiv_of_equiv,
{ refine (fiber.sigma_char f pt ⬝e _ ⬝e (fiber.sigma_char g pt)⁻¹ᵉ),
apply sigma_equiv_sigma_right, intros a,
apply equiv_eq_closed_left, apply (to_homotopy h) },
{ refine (fiber_eq rfl _),
change (h pt)⁻¹ ⬝ respect_pt f = idp ⬝ respect_pt g,
rewrite idp_con, apply inv_con_eq_of_eq_con, symmetry, exact (to_homotopy_pt h) }
end
definition transport_fiber_equiv {A B : Type} (f : A → B) {b1 b2 : B} (p : b1 = b2) : fiber f b1 ≃ fiber f b2 :=
calc fiber f b1 ≃ Σa, f a = b1 : fiber.sigma_char
... ≃ Σa, f a = b2 : sigma_equiv_sigma_right (λa, equiv_eq_closed_right (f a) p)
... ≃ fiber f b2 : fiber.sigma_char
definition pequiv_postcompose {A B B' : Type*} (f : A →* B) (g : B ≃* B') : pfiber (g ∘* f) ≃* pfiber f :=
begin
fapply pequiv_of_equiv, esimp,
refine ((transport_fiber_equiv (g ∘* f) (respect_pt g)⁻¹) ⬝e (@fiber.equiv_postcompose A B f (Point B) B' g _)),
-- change (eq_equiv_fn_eq g _ _)⁻¹ ((ap g (respect_pt f) ⬝ respect_pt g) ⬝ (respect_pt g)⁻¹) = respect_pt f,
exact sorry
end
definition pfiber_equiv_of_square {A B C D : Type*} {f : A →* B} {g : C →* D} {h : A ≃* C} {k : B ≃* D} (s : k ∘* f ~* g ∘* h)
: pfiber f ≃* pfiber g :=
calc pfiber f ≃* pfiber (k ∘* f) : /- fiber.equiv_postcompose; need a pointed version (WIP above) -/ sorry
... ≃* pfiber (g ∘* h) : pfiber_equiv_of_phomotopy s
... ≃* pfiber g : /- fiber.equiv_precompose -/ sorry
end pointed
open pointed
/---------------------
Basic definitions
---------------------/
structure prespectrum :=
(deloop : → Type*)
(glue : Πn, (deloop n) →* (Ω (deloop (succ n))))
attribute prespectrum.deloop [coercion]
structure is_spectrum [class] (E : prespectrum) :=
(is_equiv_glue : Πn, is_equiv (prespectrum.glue E n))
attribute is_spectrum.is_equiv_glue [instance]
definition equiv_glue (E : prespectrum) [H : is_spectrum E] (n:) : (E n) ≃* (Ω (E (succ n))) :=
pequiv_of_pmap (prespectrum.glue E n) _
structure spectrum :=
(to_prespectrum : prespectrum)
(to_is_spectrum : is_spectrum to_prespectrum)
attribute spectrum.to_prespectrum [coercion]
attribute spectrum.to_is_spectrum [instance]
namespace spectrum
abbreviation glue := prespectrum.glue
-- An easy way to define a spectrum.
definition MK (deloop : → Type*) (glue : Πn, (deloop n) ≃* (Ω (deloop (succ n)))) : spectrum :=
spectrum.mk (prespectrum.mk deloop (λn, glue n)) (is_spectrum.mk (λn, _))
/- Spectrum maps -/
structure smap (E F : prespectrum) :=
(to_fun : Πn, E n →* F n)
(glue_square : Πn, glue F n ∘* to_fun n ~* Ω→ (to_fun (succ n)) ∘* glue E n)
open smap
infix ` →ₛ `:30 := smap
attribute smap.to_fun [coercion]
definition sglue_square {E F : spectrum} (f : E →ₛ F) (n : )
: equiv_glue F n ∘* f n ~* Ω→ (f (succ n)) ∘* equiv_glue E n
:= glue_square f n
definition scompose {X Y Z : prespectrum} (g : Y →ₛ Z) (f : X →ₛ Y) : X →ₛ Z :=
smap.mk (λn, g n ∘* f n)
(λn, calc glue Z n ∘* to_fun g n ∘* to_fun f n
~* (glue Z n ∘* to_fun g n) ∘* to_fun f n : passoc
... ~* (Ω→(to_fun g (succ n)) ∘* glue Y n) ∘* to_fun f n : pwhisker_right (to_fun f n) (glue_square g n)
... ~* Ω→(to_fun g (succ n)) ∘* (glue Y n ∘* to_fun f n) : passoc
... ~* Ω→(to_fun g (succ n)) ∘* (Ω→ (f (succ n)) ∘* glue X n) : pwhisker_left Ω→(to_fun g (succ n)) (glue_square f n)
... ~* (Ω→(to_fun g (succ n)) ∘* Ω→(f (succ n))) ∘* glue X n : passoc
... ~* Ω→(to_fun g (succ n) ∘* to_fun f (succ n)) ∘* glue X n : pwhisker_right (glue X n) (ap1_compose _ _))
infixr ` ∘ₛ `:60 := scompose
/- Suspension prespectra -/
definition psp_suspn : → Type* → Type*
| psp_suspn 0 X := X
| psp_suspn (succ n) X := psusp (psp_suspn n X)
definition psp_susp_oo (X : Type*) :=
prespectrum.mk (λn, psp_suspn n X) (λn, loop_susp_unit (psp_suspn n X))
/- Truncations -/
definition strunc (k : ℕ₋₂) (E : spectrum) : spectrum :=
spectrum.MK (λ(n:), ptrunc (k + n) (E n))
(λ(n:), (loop_ptrunc_pequiv (k + n) (E (succ n)))⁻¹ᵉ* ∘*ᵉ (ptrunc_pequiv_ptrunc (k + n) (equiv_glue E n)))
/---------------------
Homotopy groups
---------------------/
/- A spectrum has homotopy groups indexed by all integers. The naive
definition would be
match n with
| neg_succ_of_nat k := π[0] (E (1+k))
| of_nat k := π[k] (E 0)
end
but in order to ensure easily that they are all abelian groups, we
start shifting out earlier. Since homotopy groups commute
appropriately with loop spaces, this is equivalent.
-/
definition shomotopy_group [constructor] (n : ) (E : spectrum) : CommGroup :=
match n with
| neg_succ_of_nat k := πag[0+2] (E (3 + k))
| of_nat 0 := πag[0+2] (E 2)
| of_nat 1 := πag[0+2] (E 1)
| of_nat (succ (succ k)) := πag[k+2] (E 0)
end
notation `πₛ[`:95 n:0 `] `:0 E:95 := shomotopy_group n E
/-------------------------------
Cotensor of spectra by types
-------------------------------/
definition sp_cotensor (A : Type*) (B : spectrum) : spectrum :=
spectrum.MK (λn, ppmap A (B n))
(λn, (loop_pmap_commute A (B (succ n)))⁻¹ᵉ* ∘*ᵉ (equiv_ppcompose_left (equiv_glue B n)))
/-----------------------------------------
Fibers and long exact sequences
-----------------------------------------/
definition sfiber (E F : spectrum) (f : E →ₛ F) : spectrum :=
spectrum.MK (λn, pfiber (f n))
(λn, pfiber_loop_space (f (succ n)) ∘*ᵉ pfiber_equiv_of_square (sglue_square f n))
/- Mapping spectra -/
/- Spectrification -/
/- Tensor by spaces -/
/- Smash product of spectra -/
/- Cofibers and stability -/
end spectrum