2016-02-17 23:27:26 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import homotopy.wedge types.pi
|
|
|
|
|
|
2016-03-03 16:56:56 +00:00
|
|
|
|
open eq homotopy is_trunc pointed susp nat pi equiv is_equiv trunc
|
2016-02-17 23:27:26 +00:00
|
|
|
|
|
|
|
|
|
section freudenthal
|
|
|
|
|
|
|
|
|
|
parameters {A : Type*} (n : ℕ) [is_conn n A]
|
|
|
|
|
|
|
|
|
|
--set_option pp.notation false
|
|
|
|
|
|
|
|
|
|
protected definition my_wedge_extension.ext : Π {A : Type*} {B : Type*} (n m : ℕ) [cA : is_conn n (carrier A)] [cB : is_conn m (carrier B)]
|
|
|
|
|
(P : carrier A → carrier B → (m+n)-Type) (f : Π (a : carrier A), trunctype.carrier (P a (Point B)))
|
|
|
|
|
(g : Π (b : carrier B), trunctype.carrier (P (Point A) b)),
|
|
|
|
|
f (Point A) = g (Point B) → (Π (a : carrier A) (b : carrier B), trunctype.carrier (P a b)) :=
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
definition code_fun (a : A) (q : north = north :> susp A)
|
|
|
|
|
: trunc (n * 2) (fiber (pmap.to_fun (loop_susp_unit A)) q) → trunc (n * 2) (fiber merid (q ⬝ merid a)) :=
|
|
|
|
|
begin
|
|
|
|
|
intro x, induction x with x,
|
|
|
|
|
esimp at *, cases x with a' p,
|
|
|
|
|
-- apply my_wedge_extension.ext n n,
|
|
|
|
|
exact sorry
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition code (y : susp A) : north = y → Type :=
|
|
|
|
|
susp.rec_on y
|
|
|
|
|
(λp, trunc (2*n) (fiber (loop_susp_unit A) p))
|
|
|
|
|
(λq, trunc (2*n) (fiber merid q))
|
|
|
|
|
begin
|
|
|
|
|
intros,
|
|
|
|
|
apply arrow_pathover_constant_right,
|
|
|
|
|
intro q, rewrite [transport_eq_r],
|
|
|
|
|
apply ua,
|
|
|
|
|
exact sorry
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition freudenthal_suspension : is_conn_map (n*2) (loop_susp_unit A) :=
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
end freudenthal
|