remove namespace equiv.ops
This commit is contained in:
parent
b7c4f3b6a7
commit
6d11d025dd
5 changed files with 5 additions and 5 deletions
|
@ -1,6 +1,6 @@
|
|||
import .LES_of_homotopy_groups homotopy.connectedness homotopy.homotopy_group
|
||||
open eq is_trunc pointed homotopy is_equiv fiber equiv trunc nat chain_complex prod fin algebra
|
||||
group equiv.ops trunc_index function
|
||||
group trunc_index function
|
||||
namespace nat
|
||||
open sigma sum
|
||||
definition eq_even_or_eq_odd (n : ℕ) : (Σk, 2 * k = n) ⊎ (Σk, 2 * k + 1 = n) :=
|
||||
|
|
|
@ -39,7 +39,7 @@ sequence. Now we get the fiber sequence by taking the set-truncation of this seq
|
|||
|
||||
import .chain_complex algebra.homotopy_group
|
||||
|
||||
open eq pointed sigma fiber equiv is_equiv sigma.ops is_trunc equiv.ops nat trunc algebra function
|
||||
open eq pointed sigma fiber equiv is_equiv sigma.ops is_trunc nat trunc algebra function
|
||||
|
||||
/--------------
|
||||
PART 1
|
||||
|
|
|
@ -7,7 +7,7 @@ Authors: Floris van Doorn
|
|||
|
||||
import types.int types.pointed2 types.trunc algebra.hott ..group_theory.basic .fin
|
||||
|
||||
open eq pointed int unit is_equiv equiv is_trunc trunc equiv.ops function algebra group sigma.ops
|
||||
open eq pointed int unit is_equiv equiv is_trunc trunc function algebra group sigma.ops
|
||||
sum prod nat bool fin
|
||||
namespace eq
|
||||
definition transport_eq_Fl_idp_left {A B : Type} {a : A} {b : B} (f : A → B) (q : f a = b)
|
||||
|
|
|
@ -9,7 +9,7 @@ Authors: Floris van Doorn
|
|||
|
||||
import group_theory.basic algebra.homotopy_group
|
||||
|
||||
open eq algebra pointed group trunc is_trunc nat algebra equiv equiv.ops is_equiv
|
||||
open eq algebra pointed group trunc is_trunc nat algebra equiv is_equiv
|
||||
|
||||
namespace my
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
import homotopy.wedge types.pi
|
||||
|
||||
open eq homotopy is_trunc pointed susp nat pi equiv equiv.ops is_equiv trunc
|
||||
open eq homotopy is_trunc pointed susp nat pi equiv is_equiv trunc
|
||||
|
||||
section freudenthal
|
||||
|
||||
|
|
Loading…
Reference in a new issue