45 lines
1.3 KiB
Text
45 lines
1.3 KiB
Text
|
||
|
||
import homotopy.wedge types.pi
|
||
|
||
open eq homotopy is_trunc pointed susp nat pi equiv is_equiv trunc
|
||
|
||
section freudenthal
|
||
|
||
parameters {A : Type*} (n : ℕ) [is_conn n A]
|
||
|
||
--set_option pp.notation false
|
||
|
||
protected definition my_wedge_extension.ext : Π {A : Type*} {B : Type*} (n m : ℕ) [cA : is_conn n (carrier A)] [cB : is_conn m (carrier B)]
|
||
(P : carrier A → carrier B → (m+n)-Type) (f : Π (a : carrier A), trunctype.carrier (P a (Point B)))
|
||
(g : Π (b : carrier B), trunctype.carrier (P (Point A) b)),
|
||
f (Point A) = g (Point B) → (Π (a : carrier A) (b : carrier B), trunctype.carrier (P a b)) :=
|
||
sorry
|
||
|
||
definition code_fun (a : A) (q : north = north :> susp A)
|
||
: trunc (n * 2) (fiber (pmap.to_fun (loop_susp_unit A)) q) → trunc (n * 2) (fiber merid (q ⬝ merid a)) :=
|
||
begin
|
||
intro x, induction x with x,
|
||
esimp at *, cases x with a' p,
|
||
-- apply my_wedge_extension.ext n n,
|
||
exact sorry
|
||
end
|
||
|
||
definition code (y : susp A) : north = y → Type :=
|
||
susp.rec_on y
|
||
(λp, trunc (2*n) (fiber (loop_susp_unit A) p))
|
||
(λq, trunc (2*n) (fiber merid q))
|
||
begin
|
||
intros,
|
||
apply arrow_pathover_constant_right,
|
||
intro q, rewrite [transport_eq_r],
|
||
apply ua,
|
||
exact sorry
|
||
end
|
||
|
||
definition freudenthal_suspension : is_conn_map (n*2) (loop_susp_unit A) :=
|
||
sorry
|
||
|
||
|
||
|
||
end freudenthal
|