Spectral/homotopy/smash.hlean

372 lines
14 KiB
Text
Raw Normal View History

-- Authors: Floris van Doorn
/-
In this file we define the smash type. This is the cofiber of the map
wedge A B → A × B
However, we define it (equivalently) as the pushout of the maps A + B → 2 and A + B → A × B.
-/
2016-11-03 19:34:06 +00:00
import homotopy.circle homotopy.join types.pointed homotopy.cofiber ..move_to_lib
open bool pointed eq equiv is_equiv sum bool prod unit circle cofiber prod.ops wedge
namespace smash
variables {A B : Type*}
section
open pushout
definition prod_of_sum [unfold 3] (u : A + B) : A × B :=
by induction u with a b; exact (a, pt); exact (pt, b)
definition bool_of_sum [unfold 3] (u : A + B) : bool :=
by induction u; exact ff; exact tt
definition smash' (A B : Type*) : Type := pushout (@prod_of_sum A B) (@bool_of_sum A B)
protected definition mk (a : A) (b : B) : smash' A B := inl (a, b)
2016-11-14 23:04:41 +00:00
definition pointed_smash' [instance] [constructor] (A B : Type*) : pointed (smash' A B) :=
pointed.mk (smash.mk pt pt)
definition smash [constructor] (A B : Type*) : Type* :=
2016-11-14 23:04:41 +00:00
pointed.mk' (smash' A B)
definition auxl : smash A B := inr ff
definition auxr : smash A B := inr tt
definition gluel (a : A) : smash.mk a pt = auxl :> smash A B := glue (inl a)
definition gluer (b : B) : smash.mk pt b = auxr :> smash A B := glue (inr b)
end
definition gluel' (a a' : A) : smash.mk a pt = smash.mk a' pt :> smash A B :=
gluel a ⬝ (gluel a')⁻¹
definition gluer' (b b' : B) : smash.mk pt b = smash.mk pt b' :> smash A B :=
gluer b ⬝ (gluer b')⁻¹
definition glue (a : A) (b : B) : smash.mk a pt = smash.mk pt b :=
gluel' a pt ⬝ gluer' pt b
definition glue_pt_left (b : B) : glue (Point A) b = gluer' pt b :=
whisker_right !con.right_inv _ ⬝ !idp_con
definition glue_pt_right (a : A) : glue a (Point B) = gluel' a pt :=
proof whisker_left _ !con.right_inv qed
definition ap_mk_left {a a' : A} (p : a = a') : ap (λa, smash.mk a (Point B)) p = gluel' a a' :=
by induction p; exact !con.right_inv⁻¹
definition ap_mk_right {b b' : B} (p : b = b') : ap (smash.mk (Point A)) p = gluer' b b' :=
by induction p; exact !con.right_inv⁻¹
protected definition rec {P : smash A B → Type} (Pmk : Πa b, P (smash.mk a b))
(Pl : P auxl) (Pr : P auxr) (Pgl : Πa, Pmk a pt =[gluel a] Pl)
(Pgr : Πb, Pmk pt b =[gluer b] Pr) (x : smash' A B) : P x :=
begin
induction x with x b u,
{ induction x with a b, exact Pmk a b },
{ induction b, exact Pl, exact Pr },
{ induction u: esimp,
{ apply Pgl },
{ apply Pgr }}
end
-- a rec which is easier to prove, but with worse computational properties
protected definition rec' {P : smash A B → Type} (Pmk : Πa b, P (smash.mk a b))
(Pg : Πa b, Pmk a pt =[glue a b] Pmk pt b) (x : smash' A B) : P x :=
begin
induction x using smash.rec,
{ apply Pmk },
{ exact gluel pt ▸ Pmk pt pt },
{ exact gluer pt ▸ Pmk pt pt },
{ refine change_path _ (Pg a pt ⬝o !pathover_tr),
refine whisker_right !glue_pt_right _ ⬝ _, esimp, refine !con.assoc ⬝ _,
apply whisker_left, apply con.left_inv },
{ refine change_path _ ((Pg pt b)⁻¹ᵒ ⬝o !pathover_tr),
refine whisker_right !glue_pt_left⁻² _ ⬝ _,
refine whisker_right !inv_con_inv_right _ ⬝ _, refine !con.assoc ⬝ _,
apply whisker_left, apply con.left_inv }
end
theorem rec_gluel {P : smash A B → Type} {Pmk : Πa b, P (smash.mk a b)}
{Pl : P auxl} {Pr : P auxr} (Pgl : Πa, Pmk a pt =[gluel a] Pl)
(Pgr : Πb, Pmk pt b =[gluer b] Pr) (a : A) :
apd (smash.rec Pmk Pl Pr Pgl Pgr) (gluel a) = Pgl a :=
!pushout.rec_glue
theorem rec_gluer {P : smash A B → Type} {Pmk : Πa b, P (smash.mk a b)}
{Pl : P auxl} {Pr : P auxr} (Pgl : Πa, Pmk a pt =[gluel a] Pl)
(Pgr : Πb, Pmk pt b =[gluer b] Pr) (b : B) :
apd (smash.rec Pmk Pl Pr Pgl Pgr) (gluer b) = Pgr b :=
!pushout.rec_glue
theorem rec_glue {P : smash A B → Type} {Pmk : Πa b, P (smash.mk a b)}
{Pl : P auxl} {Pr : P auxr} (Pgl : Πa, Pmk a pt =[gluel a] Pl)
(Pgr : Πb, Pmk pt b =[gluer b] Pr) (a : A) (b : B) :
apd (smash.rec Pmk Pl Pr Pgl Pgr) (glue a b) =
(Pgl a ⬝o (Pgl pt)⁻¹ᵒ) ⬝o (Pgr pt ⬝o (Pgr b)⁻¹ᵒ) :=
by rewrite [↑glue, ↑gluel', ↑gluer', +apd_con, +apd_inv, +rec_gluel, +rec_gluer]
protected definition elim {P : Type} (Pmk : Πa b, P) (Pl Pr : P)
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (x : smash' A B) : P :=
smash.rec Pmk Pl Pr (λa, pathover_of_eq _ (Pgl a)) (λb, pathover_of_eq _ (Pgr b)) x
-- an elim which is easier to prove, but with worse computational properties
protected definition elim' {P : Type} (Pmk : Πa b, P) (Pg : Πa b, Pmk a pt = Pmk pt b)
(x : smash' A B) : P :=
smash.rec' Pmk (λa b, pathover_of_eq _ (Pg a b)) x
theorem elim_gluel {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (a : A) :
ap (smash.elim Pmk Pl Pr Pgl Pgr) (gluel a) = Pgl a :=
begin
apply eq_of_fn_eq_fn_inv !(pathover_constant (@gluel A B a)),
rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑smash.elim,rec_gluel],
end
theorem elim_gluer {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (b : B) :
ap (smash.elim Pmk Pl Pr Pgl Pgr) (gluer b) = Pgr b :=
begin
apply eq_of_fn_eq_fn_inv !(pathover_constant (@gluer A B b)),
rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑smash.elim,rec_gluer],
end
theorem elim_glue {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (a : A) (b : B) :
ap (smash.elim Pmk Pl Pr Pgl Pgr) (glue a b) = (Pgl a ⬝ (Pgl pt)⁻¹) ⬝ (Pgr pt ⬝ (Pgr b)⁻¹) :=
by rewrite [↑glue, ↑gluel', ↑gluer', +ap_con, +ap_inv, +elim_gluel, +elim_gluer]
end smash
open smash
attribute smash.mk auxl auxr [constructor]
attribute smash.rec smash.elim [unfold 9] [recursor 9]
attribute smash.rec' smash.elim' [unfold 6]
namespace smash
variables {A B : Type*}
definition of_smash_pbool [unfold 2] (x : smash A pbool) : A :=
begin
induction x,
{ induction b, exact pt, exact a },
{ exact pt },
{ exact pt },
{ reflexivity },
{ induction b: reflexivity }
end
definition smash_pbool_equiv [constructor] (A : Type*) : smash A pbool ≃* A :=
begin
fapply pequiv_of_equiv,
{ fapply equiv.MK,
{ exact of_smash_pbool },
{ intro a, exact smash.mk a tt },
{ intro a, reflexivity },
{ exact abstract begin intro x, induction x using smash.rec',
{ induction b, exact (glue a tt)⁻¹, reflexivity },
{ apply eq_pathover_id_right, induction b: esimp,
{ refine ap02 _ !glue_pt_right ⬝ph _,
refine ap_compose (λx, smash.mk x _) _ _ ⬝ph _,
refine ap02 _ (!ap_con ⬝ (!elim_gluel ◾ (!ap_inv ⬝ !elim_gluel⁻²))) ⬝ph _,
apply hinverse, apply square_of_eq,
esimp, refine (!glue_pt_right ◾ !glue_pt_left)⁻¹ },
{ apply square_of_eq, refine !con.left_inv ⬝ _, esimp, symmetry,
refine ap_compose (λx, smash.mk x _) _ _ ⬝ _,
exact ap02 _ !elim_glue }} end end }},
{ reflexivity }
end
/- smash A (susp B) = susp (smash A B) <- this follows from associativity and smash with S¹-/
/- To prove: Σ(X × Y) ≃ ΣX ΣY Σ(X ∧ Y) (notation means suspension, wedge, smash),
and both are equivalent to the reduced join -/
/- To prove: commutative, associative -/
2016-11-03 19:34:06 +00:00
/- smash A B ≃ pcofiber (pprod_of_pwedge A B) -/
2016-11-14 23:04:41 +00:00
definition prod_of_wedge [unfold 3] (v : pwedge' A B) : A × B :=
2016-11-03 19:34:06 +00:00
begin
induction v with a b ,
{ exact (a, pt) },
{ exact (pt, b) },
{ reflexivity }
end
2016-11-14 23:04:41 +00:00
variables (A B)
definition pprod_of_pwedge [constructor] : pwedge' A B →* A ×* B :=
2016-11-03 19:34:06 +00:00
begin
fconstructor,
2016-11-14 23:04:41 +00:00
{ exact prod_of_wedge },
2016-11-03 19:34:06 +00:00
{ reflexivity }
end
2016-11-14 23:04:41 +00:00
variables {A B}
2016-11-03 19:34:06 +00:00
attribute pcofiber [constructor]
2016-11-14 23:04:41 +00:00
definition pcofiber_of_smash [unfold 3] (x : smash A B) : pcofiber' (@pprod_of_pwedge A B) :=
2016-11-03 19:34:06 +00:00
begin
induction x,
{ exact pushout.inr (a, b) },
{ exact pushout.inl ⋆ },
{ exact pushout.inl ⋆ },
{ symmetry, exact pushout.glue (pushout.inl a) },
{ symmetry, exact pushout.glue (pushout.inr b) }
2016-11-03 19:34:06 +00:00
end
2016-11-14 23:04:41 +00:00
-- move
definition ap_eq_ap011 {A B C X : Type} (f : A → B → C) (g : X → A) (h : X → B) {x x' : X}
(p : x = x') : ap (λx, f (g x) (h x)) p = ap011 f (ap g p) (ap h p) :=
by induction p; reflexivity
2016-11-14 23:04:41 +00:00
definition smash_of_pcofiber_glue [unfold 3] (x : pwedge' A B) :
Point (smash A B) = smash.mk (prod_of_wedge x).1 (prod_of_wedge x).2 :=
begin
induction x with a b: esimp,
{ apply gluel' },
{ apply gluer' },
{ apply eq_pathover_constant_left, refine _ ⬝hp (ap_eq_ap011 smash.mk _ _ _)⁻¹,
rewrite [ap_compose' prod.pr1, ap_compose' prod.pr2],
-- TODO: define elim_glue for wedges and remove k in krewrite
krewrite [pushout.elim_glue], esimp, apply vdeg_square,
exact !con.right_inv ⬝ !con.right_inv⁻¹ }
end
definition smash_of_pcofiber [unfold 3] (x : pcofiber' (pprod_of_pwedge A B)) : smash A B :=
begin
induction x with x x,
{ exact smash.mk pt pt },
{ exact smash.mk x.1 x.2 },
2016-11-14 23:04:41 +00:00
{ exact smash_of_pcofiber_glue x }
end
definition pcofiber_of_smash_of_pcofiber (x : pcofiber' (pprod_of_pwedge A B)) :
pcofiber_of_smash (smash_of_pcofiber x) = x :=
begin
induction x with x x,
{ refine (pushout.glue pt)⁻¹ },
{ },
{ }
end
definition smash_of_pcofiber_of_smash (x : smash A B) :
smash_of_pcofiber (pcofiber_of_smash x) = x :=
begin
induction x,
{ reflexivity },
{ apply gluel },
{ apply gluer },
{ apply eq_pathover_id_right, refine ap_compose smash_of_pcofiber _ _ ⬝ph _,
refine ap02 _ !elim_gluel ⬝ph _, refine !ap_inv ⬝ph _, refine !pushout.elim_glue⁻² ⬝ph _,
esimp, apply square_of_eq, refine !idp_con ⬝ _ ⬝ whisker_right !inv_con_inv_right⁻¹ _,
exact !inv_con_cancel_right⁻¹ },
{ apply eq_pathover_id_right, refine ap_compose smash_of_pcofiber _ _ ⬝ph _,
refine ap02 _ !elim_gluer ⬝ph _, refine !ap_inv ⬝ph _, refine !pushout.elim_glue⁻² ⬝ph _,
esimp, apply square_of_eq, refine !idp_con ⬝ _ ⬝ whisker_right !inv_con_inv_right⁻¹ _,
exact !inv_con_cancel_right⁻¹ },
end
2016-11-03 19:34:06 +00:00
2016-11-14 23:04:41 +00:00
variables (A B)
definition smash_pequiv_pcofiber : smash A B ≃* pcofiber' (pprod_of_pwedge A B) :=
begin
fapply pequiv_of_equiv,
{ fapply equiv.MK,
{ apply pcofiber_of_smash },
{ apply smash_of_pcofiber },
{ exact pcofiber_of_smash_of_pcofiber },
{ exact smash_of_pcofiber_of_smash }},
{ esimp, symmetry, apply pushout.glue pt }
end
variables {A B}
/- smash A S¹ = susp A -/
open susp
definition psusp_of_smash_pcircle [unfold 2] (x : smash A S¹*) : psusp A :=
begin
induction x,
{ induction b, exact pt, exact merid a ⬝ (merid pt)⁻¹ },
{ exact pt },
{ exact pt },
{ reflexivity },
{ induction b, reflexivity, apply eq_pathover_constant_right, apply hdeg_square,
exact !elim_loop ⬝ !con.right_inv }
end
definition smash_pcircle_of_psusp [unfold 2] (x : psusp A) : smash A S¹* :=
begin
induction x,
{ exact pt },
{ exact pt },
{ exact gluel' pt a ⬝ ap (smash.mk a) loop ⬝ gluel' a pt },
end
2016-10-10 15:10:24 +00:00
exit -- the definitions below compile, but take a long time to do so and have sorry's in them
definition smash_pcircle_of_psusp_of_smash_pcircle_pt [unfold 3] (a : A) (x : S¹*) :
smash_pcircle_of_psusp (psusp_of_smash_pcircle (smash.mk a x)) = smash.mk a x :=
begin
induction x,
{ exact gluel' pt a },
{ exact abstract begin apply eq_pathover,
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
refine ap02 _ (elim_loop north (merid a ⬝ (merid pt)⁻¹)) ⬝ph _,
refine !ap_con ⬝ (!elim_merid ◾ (!ap_inv ⬝ !elim_merid⁻²)) ⬝ph _,
-- make everything below this a lemma defined by path induction?
apply square_of_eq, rewrite [+con.assoc], apply whisker_left, apply whisker_left,
symmetry, apply con_eq_of_eq_inv_con, esimp, apply con_eq_of_eq_con_inv,
refine _⁻² ⬝ !con_inv, refine _ ⬝ !con.assoc,
refine _ ⬝ whisker_right !inv_con_cancel_right⁻¹ _, refine _ ⬝ !con.right_inv⁻¹,
refine !con.right_inv ◾ _, refine _ ◾ !con.right_inv,
refine !ap_mk_right ⬝ !con.right_inv end end }
end
definition smash_pcircle_of_psusp_of_smash_pcircle_gluer_base (b : S¹*)
: square (smash_pcircle_of_psusp_of_smash_pcircle_pt (Point A) b)
(gluer pt)
(ap smash_pcircle_of_psusp (ap (λ a, psusp_of_smash_pcircle a) (gluer b)))
(gluer b) :=
begin
refine ap02 _ !elim_gluer ⬝ph _,
induction b,
{ apply square_of_eq, exact whisker_right !con.right_inv _ },
{ apply square_pathover', exact sorry }
end
definition smash_pcircle_pequiv [constructor] (A : Type*) : smash A S¹* ≃* psusp A :=
begin
fapply pequiv_of_equiv,
{ fapply equiv.MK,
{ exact psusp_of_smash_pcircle },
{ exact smash_pcircle_of_psusp },
{ exact abstract begin intro x, induction x,
{ reflexivity },
{ exact merid pt },
{ apply eq_pathover_id_right,
refine ap_compose psusp_of_smash_pcircle _ _ ⬝ph _,
refine ap02 _ !elim_merid ⬝ph _,
rewrite [↑gluel', +ap_con, +ap_inv, -ap_compose'],
refine (_ ◾ _⁻² ◾ _ ◾ (_ ◾ _⁻²)) ⬝ph _,
rotate 5, do 2 apply elim_gluel, esimp, apply elim_loop, do 2 apply elim_gluel,
refine idp_con (merid a ⬝ (merid (Point A))⁻¹) ⬝ph _,
apply square_of_eq, refine !idp_con ⬝ _⁻¹, apply inv_con_cancel_right } end end },
{ intro x, induction x using smash.rec,
{ exact smash_pcircle_of_psusp_of_smash_pcircle_pt a b },
{ exact gluel pt },
{ exact gluer pt },
{ apply eq_pathover_id_right,
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
refine ap02 _ !elim_gluel ⬝ph _,
esimp, apply whisker_rt, exact vrfl },
{ apply eq_pathover_id_right,
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
refine ap02 _ !elim_gluer ⬝ph _,
induction b,
{ apply square_of_eq, exact whisker_right !con.right_inv _ },
{ exact sorry}
}}},
{ reflexivity }
end
end smash
-- (X × A) → Y ≃ X → A → Y