Spectral/algebra/spectral_sequence.hlean

742 lines
29 KiB
Text
Raw Normal View History

/- Exact couples of graded (left-) R-modules. This file includes:
- Constructing exact couples from sequences of maps
- Deriving an exact couple
- The convergence theorem for exact couples -/
-- Author: Floris van Doorn
import .graded ..spectrum.basic .product_group
open algebra is_trunc left_module is_equiv equiv eq function nat sigma sigma.ops set_quotient
/- exact couples -/
namespace left_module
structure exact_couple (R : Ring) (I : Set) : Type :=
(D E : graded_module R I)
(i : D →gm D) (j : D →gm E) (k : E →gm D)
(ij : is_exact_gmod i j)
(jk : is_exact_gmod j k)
(ki : is_exact_gmod k i)
open exact_couple
namespace derived_couple
section
parameters {R : Ring} {I : Set} (X : exact_couple R I)
local abbreviation D := D X
local abbreviation E := E X
local abbreviation i := i X
local abbreviation j := j X
local abbreviation k := k X
local abbreviation ij := ij X
local abbreviation jk := jk X
local abbreviation ki := ki X
definition d : E →gm E := j ∘gm k
definition D' : graded_module R I := graded_image i
definition E' : graded_module R I := graded_homology d d
definition is_contr_E' {x : I} (H : is_contr (E x)) : is_contr (E' x) :=
!is_contr_homology
definition is_contr_D' {x : I} (H : is_contr (D x)) : is_contr (D' x) :=
!is_contr_image_module
definition i' : D' →gm D' :=
graded_image_lift i ∘gm graded_submodule_incl (λx, image_rel (i ← x))
-- degree i + 0
lemma is_surjective_i' {x y : I} (p : deg i' x = y)
(H : Π⦃z⦄ (q : deg i z = x), is_surjective (i ↘ q)) : is_surjective (i' ↘ p) :=
begin
apply is_surjective_graded_hom_compose,
{ intro y q, apply is_surjective_graded_image_lift },
{ intro y q, apply is_surjective_of_is_equiv,
induction q,
exact to_is_equiv (equiv_of_isomorphism (image_module_isomorphism (i ← x) (H _)))
}
end
lemma j_lemma1 ⦃x : I⦄ (m : D x) : d ((deg j) x) (j x m) = 0 :=
begin
rewrite [graded_hom_compose_fn,↑d,graded_hom_compose_fn],
refine ap (graded_hom_fn j (deg k (deg j x))) _ ⬝
!to_respect_zero,
exact compose_constant.elim (gmod_im_in_ker (jk)) x m
end
lemma j_lemma2 : Π⦃x : I⦄ ⦃m : D x⦄ (p : i x m = 0),
(graded_quotient_map _ ∘gm graded_hom_lift j j_lemma1) x m = 0 :> E' _ :=
begin
have Π⦃x y : I⦄ (q : deg k x = y) (r : deg d x = deg j y)
(s : ap (deg j) q = r) ⦃m : D y⦄ (p : i y m = 0), image (d ↘ r) (j y m),
begin
intros, induction s, induction q,
note m_in_im_k := is_exact.ker_in_im (ki idp _) _ p,
induction m_in_im_k with e q,
induction q,
apply image.mk e idp
end,
have Π⦃x : I⦄ ⦃m : D x⦄ (p : i x m = 0), image (d ← (deg j x)) (j x m),
begin
intros,
refine this _ _ _ p,
exact to_right_inv (deg k) _ ⬝ to_left_inv (deg j) x,
apply is_set.elim
-- rewrite [ap_con, -adj],
end,
intros,
rewrite [graded_hom_compose_fn],
exact quotient_map_eq_zero _ (this p)
end
definition j' : D' →gm E' :=
graded_image_elim (graded_homology_intro d d ∘gm graded_hom_lift j j_lemma1) j_lemma2
-- degree deg j - deg i
lemma k_lemma1 ⦃x : I⦄ (m : E x) (p : d x m = 0) : image (i ← (deg k x)) (k x m) :=
gmod_ker_in_im (exact_couple.ij X) (k x m) p
definition k₂ : graded_kernel d →gm D' := graded_submodule_functor k k_lemma1
lemma k_lemma2 ⦃x : I⦄ (m : E x) (h₁ : kernel_rel (d x) m) (h₂ : image (d ← x) m) :
k₂ x ⟨m, h₁⟩ = 0 :=
begin
assert H₁ : Π⦃x' y z w : I⦄ (p : deg k x' = y) (q : deg j y = z) (r : deg k z = w) (n : E x'),
k ↘ r (j ↘ q (k ↘ p n)) = 0,
{ intros, exact gmod_im_in_ker (exact_couple.jk X) q r (k ↘ p n) },
induction h₂ with n p,
assert H₂ : k x m = 0,
{ rewrite [-p], refine ap (k x) (graded_hom_compose_fn_out j k x n) ⬝ _, apply H₁ },
exact subtype_eq H₂
end
definition k' : E' →gm D' :=
graded_quotient_elim (graded_submodule_functor k k_lemma1)
(by intro x m h; exact k_lemma2 m.1 m.2 h)
definition i'_eq ⦃x : I⦄ (m : D x) (h : image (i ← x) m) : (i' x ⟨m, h⟩).1 = i x m :=
by reflexivity
definition k'_eq ⦃x : I⦄ (m : E x) (h : d x m = 0) : (k' x (class_of ⟨m, h⟩)).1 = k x m :=
by reflexivity
lemma j'_eq {x : I} (m : D x) : j' ↘ (ap (deg j) (left_inv (deg i) x)) (graded_image_lift i x m) =
class_of (graded_hom_lift j proof j_lemma1 qed x m) :=
begin
refine graded_image_elim_destruct _ _ _ idp _ m,
apply is_set.elim,
end
definition deg_i' : deg i' ~ deg i := by reflexivity
definition deg_j' : deg j' ~ deg j ∘ (deg i)⁻¹ := by reflexivity
definition deg_k' : deg k' ~ deg k := by reflexivity
open group
set_option pp.coercions true
lemma i'j' : is_exact_gmod i' j' :=
begin
intro x, refine equiv_rect (deg i) _ _,
intros y z p q, revert z q x p,
refine eq.rec_grading (deg i ⬝e deg j') (deg j) (ap (deg j) (left_inv (deg i) y)) _,
intro x, revert y, refine eq.rec_equiv (deg i) _,
apply transport (λx, is_exact_mod x _) (idpath (i' x)),
apply transport (λx, is_exact_mod _ (j' ↘ (ap (deg j) (left_inv (deg i) x)))) (idpath x),
apply is_exact_mod.mk,
{ revert x, refine equiv_rect (deg i) _ _, intro x,
refine graded_image.rec _, intro m,
transitivity j' ↘ _ (graded_image_lift i (deg i x) (i x m)),
apply ap (λx, j' ↘ _ x), apply subtype_eq, apply i'_eq,
refine !j'_eq ⬝ _,
apply ap class_of, apply subtype_eq, exact is_exact.im_in_ker (exact_couple.ij X idp idp) m },
{ revert x, refine equiv_rect (deg k) _ _, intro x,
refine graded_image.rec _, intro m p,
assert q : graded_homology_intro d d (deg j (deg k x))
(graded_hom_lift j j_lemma1 (deg k x) m) = 0,
{ exact !j'_eq⁻¹ ⬝ p },
note q2 := image_of_graded_homology_intro_eq_zero idp (graded_hom_lift j _ _ m) q,
induction q2 with n r,
assert s : j (deg k x) (m - k x n) = 0,
{ refine respect_sub (j (deg k x)) m (k x n) ⬝ _,
refine ap (sub _) r ⬝ _, apply sub_self },
assert t : trunctype.carrier (image (i ← (deg k x)) (m - k x n)),
{ exact is_exact.ker_in_im (exact_couple.ij X _ _) _ s },
refine image.mk ⟨m - k x n, t⟩ _,
apply subtype_eq, refine !i'_eq ⬝ !to_respect_sub ⬝ _,
refine ap (@sub (D (deg i (deg k x))) _ _) _ ⬝ @sub_zero _ _ _,
apply is_exact.im_in_ker (exact_couple.ki X _ _) }
end
lemma j'k' : is_exact_gmod j' k' :=
begin
refine equiv_rect (deg i) _ _,
intros x y z p, revert y p z,
refine eq.rec_grading (deg i ⬝e deg j') (deg j) (ap (deg j) (left_inv (deg i) x)) _,
intro z q, induction q,
apply is_exact_mod.mk,
{ refine graded_image.rec _, intro m,
refine ap (k' _) (j'_eq m) ⬝ _,
apply subtype_eq,
refine k'_eq _ _ ⬝ _,
exact is_exact.im_in_ker (exact_couple.jk X idp idp) m },
{ intro m p, induction m using set_quotient.rec_prop with m,
induction m with m h, note q := (k'_eq m h)⁻¹ ⬝ ap pr1 p,
induction is_exact.ker_in_im (exact_couple.jk X idp idp) m q with n r,
apply image.mk (graded_image_lift i x n),
refine !j'_eq ⬝ _,
apply ap class_of, apply subtype_eq, exact r }
end
lemma k'i' : is_exact_gmod k' i' :=
begin
apply is_exact_gmod.mk,
{ intro x m, induction m using set_quotient.rec_prop with m,
cases m with m p, apply subtype_eq,
change i (deg k x) (k x m) = 0,
exact is_exact.im_in_ker (exact_couple.ki X idp idp) m },
{ intro x m, induction m with m h, intro p,
have i (deg k x) m = 0, from ap pr1 p,
induction is_exact.ker_in_im (exact_couple.ki X idp idp) m this with n q,
have j (deg k x) m = 0, from @(is_exact.im_in_ker2 (exact_couple.ij X _ _)) m h,
have d x n = 0, from ap (j (deg k x)) q ⬝ this,
exact image.mk (class_of ⟨n, this⟩) (subtype_eq q) }
end
end
end derived_couple
open derived_couple
definition derived_couple [constructor] {R : Ring} {I : Set}
(X : exact_couple R I) : exact_couple R I :=
⦃exact_couple, D := D' X, E := E' X, i := i' X, j := j' X, k := k' X,
ij := i'j' X, jk := j'k' X, ki := k'i' X⦄
/- if an exact couple is bounded, we can prove the convergence theorem for it -/
structure is_bounded {R : Ring} {I : Set} (X : exact_couple R I) : Type :=
mk' :: (B B' : I → )
(Dub : Π⦃x y⦄ ⦃s : ℕ⦄, (deg (i X))^[s] x = y → B x ≤ s → is_contr (D X y))
(Dlb : Π⦃x y z⦄ ⦃s : ℕ⦄ (p : deg (i X) x = y), (deg (i X))^[s] y = z → B' z ≤ s → is_surjective (i X ↘ p))
(Elb : Π⦃x y⦄ ⦃s : ℕ⦄, (deg (i X))⁻¹ᵉ^[s] x = y → B x ≤ s → is_contr (E X y))
(deg_ik_commute : hsquare (deg (k X)) (deg (k X)) (deg (i X)) (deg (i X)))
(deg_ij_commute : hsquare (deg (j X)) (deg (j X)) (deg (i X)) (deg (i X)))
/- Note: Elb proves Dlb for some bound B', but we want tight control over when B' = 0 -/
protected definition is_bounded.mk [constructor] {R : Ring} {I : Set} {X : exact_couple R I}
(B B' B'' : I → )
(Dub : Π⦃x : I⦄ ⦃s : ℕ⦄, B x ≤ s → is_contr (D X ((deg (i X))^[s] x)))
(Dlb : Π⦃x : I⦄ ⦃s : ℕ⦄, B' x ≤ s → is_surjective (i X (((deg (i X))⁻¹ᵉ^[s + 1] x))))
(Elb : Π⦃x : I⦄ ⦃s : ℕ⦄, B'' x ≤ s → is_contr (E X ((deg (i X))⁻¹ᵉ^[s] x)))
(deg_ik_commute : hsquare (deg (k X)) (deg (k X)) (deg (i X)) (deg (i X)))
(deg_ij_commute : hsquare (deg (j X)) (deg (j X)) (deg (i X)) (deg (i X))) : is_bounded X :=
begin
apply is_bounded.mk' (λx, max (B x) (B'' x)) B',
{ intro x y s p h, induction p, exact Dub (le.trans !le_max_left h) },
{ intro x y z s p q h, induction p, induction q,
refine transport (λx, is_surjective (i X x)) _ (Dlb h),
rewrite [-iterate_succ], apply iterate_left_inv },
{ intro x y s p h, induction p, exact Elb (le.trans !le_max_right h) },
{ assumption },
{ assumption }
end
namespace convergence_theorem
section
open is_bounded
parameters {R : Ring} {I : Set} (X : exact_couple R I) (HH : is_bounded X)
local abbreviation B := B HH
local abbreviation B' := B' HH
local abbreviation Dub := Dub HH
local abbreviation Dlb := Dlb HH
local abbreviation Elb := Elb HH
local abbreviation deg_ik_commute := deg_ik_commute HH
local abbreviation deg_ij_commute := deg_ij_commute HH
definition deg_iterate_ik_commute (n : ) :
hsquare (deg (k X)) (deg (k X)) ((deg (i X))^[n]) ((deg (i X))^[n]) :=
iterate_commute n deg_ik_commute
definition deg_iterate_ij_commute (n : ) :
hsquare (deg (j X)) (deg (j X)) ((deg (i X))⁻¹ᵉ^[n]) ((deg (i X))⁻¹ᵉ^[n]) :=
iterate_commute n (hvinverse deg_ij_commute)
definition B2 (x : I) : := max (B (deg (k X) x)) (B ((deg (j X))⁻¹ x))
definition Eub ⦃x y : I⦄ ⦃s : ℕ⦄ (p : (deg (i X))^[s] x = y) (h : B2 x ≤ s) :
is_contr (E X y) :=
begin
induction p,
refine @(is_contr_middle_of_is_exact (exact_couple.jk X (right_inv (deg (j X)) _) idp)) _ _ _,
exact Dub (iterate_commute s (hhinverse deg_ij_commute) x) (le.trans !le_max_right h),
exact Dub !deg_iterate_ik_commute (le.trans !le_max_left h)
end
-- we start counting pages at 0
definition page (r : ) : exact_couple R I :=
iterate derived_couple r X
definition is_contr_E (r : ) (x : I) (h : is_contr (E X x)) :
is_contr (E (page r) x) :=
by induction r with r IH; exact h; exact is_contr_E' (page r) IH
definition is_contr_D (r : ) (x : I) (h : is_contr (D X x)) :
is_contr (D (page r) x) :=
by induction r with r IH; exact h; exact is_contr_D' (page r) IH
definition deg_i (r : ) : deg (i (page r)) ~ deg (i X) :=
begin
induction r with r IH,
{ reflexivity },
{ exact IH }
end
definition deg_k (r : ) : deg (k (page r)) ~ deg (k X) :=
begin
induction r with r IH,
{ reflexivity },
{ exact IH }
end
definition deg_j (r : ) :
deg (j (page r)) ~ deg (j X) ∘ iterate (deg (i X))⁻¹ r :=
begin
induction r with r IH,
{ reflexivity },
{ refine hwhisker_left (deg (j (page r)))
(to_inv_homotopy_inv (deg_i r)) ⬝hty _,
refine hwhisker_right _ IH ⬝hty _,
apply hwhisker_left, symmetry, apply iterate_succ }
end
definition deg_j_inv (r : ) :
(deg (j (page r)))⁻¹ ~ iterate (deg (i X)) r ∘ (deg (j X))⁻¹ :=
have H : deg (j (page r)) ~ iterate_equiv (deg (i X))⁻¹ᵉ r ⬝e deg (j X), from deg_j r,
λx, to_inv_homotopy_inv H x ⬝ iterate_inv (deg (i X))⁻¹ᵉ r ((deg (j X))⁻¹ x)
definition deg_d (r : ) :
deg (d (page r)) ~ deg (j X) ∘ iterate (deg (i X))⁻¹ r ∘ deg (k X) :=
compose2 (deg_j r) (deg_k r)
definition deg_d_inv (r : ) :
(deg (d (page r)))⁻¹ ~ (deg (k X))⁻¹ ∘ iterate (deg (i X)) r ∘ (deg (j X))⁻¹ :=
compose2 (to_inv_homotopy_inv (deg_k r)) (deg_j_inv r)
definition B3 (x : I) : :=
max (B (deg (j X) (deg (k X) x))) (B2 ((deg (k X))⁻¹ ((deg (j X))⁻¹ x)))
definition Estable {x : I} {r : } (H : B3 x ≤ r) :
E (page (r + 1)) x ≃lm E (page r) x :=
begin
change homology (d (page r) x) (d (page r) ← x) ≃lm E (page r) x,
apply homology_isomorphism: apply is_contr_E,
exact Eub (hhinverse (deg_iterate_ik_commute r) _ ⬝ (deg_d_inv r x)⁻¹)
(le.trans !le_max_right H),
exact Elb (deg_iterate_ij_commute r _ ⬝ (deg_d r x)⁻¹)
(le.trans !le_max_left H)
end
definition is_surjective_i {x y z : I} {r s : } (H : B' z ≤ s + r)
(p : deg (i (page r)) x = y) (q : iterate (deg (i X)) s y = z) :
is_surjective (i (page r) ↘ p) :=
begin
revert x y z s H p q, induction r with r IH: intro x y z s H p q,
{ exact Dlb p q H },
/- the following is a start of the proof that i is surjective using that E is contractible (but this
makes the bound 1 higher than necessary -/
-- induction p, change is_surjective (i X x),
-- apply @(is_surjective_of_is_exact_of_is_contr (exact_couple.ij X idp idp)),
-- refine Elb _ H,
-- exact sorry
{ change is_surjective (i' (page r) ↘ p),
apply is_surjective_i', intro z' q',
refine IH _ _ _ _ (le.trans H (le_of_eq (succ_add s r)⁻¹)) _ _,
refine !iterate_succ ⬝ ap ((deg (i X))^[s]) _ ⬝ q,
exact !deg_i⁻¹ ⬝ p }
end
definition Dstable {x : I} {r : } (H : B' x ≤ r) :
D (page (r + 1)) x ≃lm D (page r) x :=
begin
change image_module (i (page r) ← x) ≃lm D (page r) x,
refine image_module_isomorphism (i (page r) ← x)
(is_surjective_i (le.trans H (le_of_eq !zero_add⁻¹)) _ _),
reflexivity
end
/- the infinity pages of E and D -/
definition Einf : graded_module R I :=
λx, E (page (B3 x)) x
definition Dinf : graded_module R I :=
λx, D (page (B' x)) x
definition Einfstable {x y : I} {r : } (Hr : B3 y ≤ r) (p : x = y) : Einf y ≃lm E (page r) x :=
by symmetry; induction p; induction Hr with r Hr IH; reflexivity; exact Estable Hr ⬝lm IH
definition Dinfstable {x y : I} {r : } (Hr : B' y ≤ r) (p : x = y) : Dinf y ≃lm D (page r) x :=
by symmetry; induction p; induction Hr with r Hr IH; reflexivity; exact Dstable Hr ⬝lm IH
2017-05-23 04:32:03 +00:00
parameters (x : I)
definition r (n : ) : :=
max (max (B (deg (j X) (deg (k X) x)) + n + 1) (B3 ((deg (i X))^[n] x)))
(max (B' (deg (k X) ((deg (i X))^[n] x)))
(max (B' (deg (k X) ((deg (i X))^[n+1] x))) (B ((deg (j X))⁻¹ ((deg (i X))^[n] x)))))
lemma rb0 (n : ) : r n ≥ n + 1 :=
ge.trans !le_max_left (ge.trans !le_max_left !le_add_left)
lemma rb1 (n : ) : B (deg (j X) (deg (k X) x)) ≤ r n - (n + 1) :=
nat.le_sub_of_add_le (le.trans !le_max_left !le_max_left)
lemma rb2 (n : ) : B3 ((deg (i X))^[n] x) ≤ r n :=
le.trans !le_max_right !le_max_left
lemma rb3 (n : ) : B' (deg (k X) ((deg (i X))^[n] x)) ≤ r n :=
le.trans !le_max_left !le_max_right
lemma rb4 (n : ) : B' (deg (k X) ((deg (i X))^[n+1] x)) ≤ r n :=
le.trans (le.trans !le_max_left !le_max_right) !le_max_right
lemma rb5 (n : ) : B ((deg (j X))⁻¹ ((deg (i X))^[n] x)) ≤ r n :=
le.trans (le.trans !le_max_right !le_max_right) !le_max_right
definition Einfdiag : graded_module R :=
λn, Einf ((deg (i X))^[n] x)
definition Dinfdiag : graded_module R :=
λn, Dinf (deg (k X) ((deg (i X))^[n] x))
definition short_exact_mod_page_r (n : ) : short_exact_mod
(E (page (r n)) ((deg (i X))^[n] x))
(D (page (r n)) (deg (k (page (r n))) ((deg (i X))^[n] x)))
(D (page (r n)) (deg (i (page (r n))) (deg (k (page (r n))) ((deg (i X))^[n] x)))) :=
begin
fapply short_exact_mod_of_is_exact,
{ exact j (page (r n)) ← ((deg (i X))^[n] x) },
{ exact k (page (r n)) ((deg (i X))^[n] x) },
{ exact i (page (r n)) (deg (k (page (r n))) ((deg (i X))^[n] x)) },
{ exact j (page (r n)) _ },
{ apply is_contr_D, refine Dub !deg_j_inv⁻¹ (rb5 n) },
{ apply is_contr_E, refine Elb _ (rb1 n),
refine !deg_iterate_ij_commute ⬝ _,
refine ap (deg (j X)) _ ⬝ !deg_j⁻¹,
refine iterate_sub _ !rb0 _ ⬝ _, apply ap (_^[r n]),
exact ap (deg (i X)) (!deg_iterate_ik_commute ⬝ !deg_k⁻¹) ⬝ !deg_i⁻¹ },
{ apply jk (page (r n)) },
{ apply ki (page (r n)) },
{ apply ij (page (r n)) }
end
/- the convergence theorem is a combination of the following three results -/
definition short_exact_mod_infpage (n : ) :
short_exact_mod (Einfdiag n) (Dinfdiag n) (Dinfdiag (n+1)) :=
begin
refine short_exact_mod_isomorphism _ _ _ (short_exact_mod_page_r n),
{ exact Einfstable !rb2 idp },
{ exact Dinfstable !rb3 !deg_k },
{ exact Dinfstable !rb4 (!deg_i ⬝ ap (deg (i X)) !deg_k ⬝ !deg_ik_commute) }
end
definition Dinfdiag0 (bound_zero : B' (deg (k X) x) = 0) : Dinfdiag 0 ≃lm D X (deg (k X) x) :=
Dinfstable (le_of_eq bound_zero) idp
lemma Dinfdiag_stable {s : } (h : B (deg (k X) x) ≤ s) : is_contr (Dinfdiag s) :=
is_contr_D _ _ (Dub !deg_iterate_ik_commute h)
end
end convergence_theorem
-- open convergence_theorem
-- print axioms short_exact_mod_infpage
-- print axioms Dinfdiag0
-- print axioms Dinfdiag_stable
open int group prod convergence_theorem prod.ops
definition Z2 [constructor] : Set := g ×g g
structure converges_to.{u v w} {R : Ring} (E' : g → g → LeftModule.{u v} R)
(Dinf : g → LeftModule.{u w} R) : Type.{max u (v+1) (w+1)} :=
(X : exact_couple.{u 0 v w} R Z2)
(HH : is_bounded X)
(s₀ : g → g)
(p : Π(n : g), is_bounded.B' HH (deg (k X) (n, s₀ n)) = 0)
(e : Π(x : g ×g g), exact_couple.E X x ≃lm E' x.1 x.2)
(f : Π(n : g), exact_couple.D X (deg (k X) (n, s₀ n)) ≃lm Dinf n)
infix ` ⟹ `:25 := converges_to
definition converges_to_g [reducible] (E' : g → g → AbGroup) (Dinf : g → AbGroup) : Type :=
(λn s, LeftModule_int_of_AbGroup (E' n s)) ⟹ (λn, LeftModule_int_of_AbGroup (Dinf n))
infix ` ⟹ᵍ `:25 := converges_to_g
section
open converges_to
parameters {R : Ring} {E' : g → g → LeftModule R} {Dinf : g → LeftModule R} (c : E' ⟹ Dinf)
local abbreviation X := X c
local abbreviation i := i X
local abbreviation HH := HH c
local abbreviation s₀ := s₀ c
local abbreviation Dinfdiag (n : g) (k : ) := Dinfdiag X HH (n, s₀ n) k
local abbreviation Einfdiag (n : g) (k : ) := Einfdiag X HH (n, s₀ n) k
definition converges_to_isomorphism {E'' : g → g → LeftModule R} {Dinf' : graded_module R g}
(e' : Πn s, E' n s ≃lm E'' n s) (f' : Πn, Dinf n ≃lm Dinf' n) : E'' ⟹ Dinf' :=
converges_to.mk X HH s₀ (p c)
begin intro x, induction x with n s, exact e c (n, s) ⬝lm e' n s end
(λn, f c n ⬝lm f' n)
theorem is_contr_converges_to_precise (n : g)
(H : Π(n : g) (l : ), is_contr (E' ((deg i)^[l] (n, s₀ n)).1 ((deg i)^[l] (n, s₀ n)).2)) :
is_contr (Dinf n) :=
begin
assert H2 : Π(l : ), is_contr (Einfdiag n l),
{ intro l, apply is_contr_E,
refine @(is_trunc_equiv_closed_rev -2 (equiv_of_isomorphism (e c _))) (H n l) },
assert H3 : is_contr (Dinfdiag n 0),
{ fapply nat.rec_down (λk, is_contr (Dinfdiag n k)),
{ exact is_bounded.B HH (deg (k X) (n, s₀ n)) },
{ apply Dinfdiag_stable, reflexivity },
{ intro l H,
exact is_contr_middle_of_short_exact_mod (short_exact_mod_infpage X HH (n, s₀ n) l)
(H2 l) H }},
refine @is_trunc_equiv_closed _ _ _ _ H3,
exact equiv_of_isomorphism (Dinfdiag0 X HH (n, s₀ n) (p c n) ⬝lm f c n)
end
theorem is_contr_converges_to (n : g) (H : Π(n s : g), is_contr (E' n s)) : is_contr (Dinf n) :=
is_contr_converges_to_precise n (λn s, !H)
end
variables {E' : g → g → AbGroup} {Dinf : g → AbGroup} (c : E' ⟹ᵍ Dinf)
definition converges_to_g_isomorphism {E'' : g → g → AbGroup} {Dinf' : g → AbGroup}
(e' : Πn s, E' n s ≃g E'' n s) (f' : Πn, Dinf n ≃g Dinf' n) : E'' ⟹ᵍ Dinf' :=
converges_to_isomorphism c (λn s, lm_iso_int.mk (e' n s)) (λn, lm_iso_int.mk (f' n))
end left_module
open left_module
namespace pointed
open pointed int group is_trunc trunc is_conn
definition homotopy_group_conn_nat (n : ) (A : Type*[1]) : AbGroup :=
AbGroup.mk (π[n] A) (ab_group_homotopy_group_of_is_conn n A)
definition homotopy_group_conn : Π(n : ) (A : Type*[1]), AbGroup
| (of_nat n) A := homotopy_group_conn_nat n A
| (-[1+ n]) A := trivial_ab_group_lift
notation `πc[`:95 n:0 `]`:0 := homotopy_group_conn n
definition homotopy_group_conn_nat_functor (n : ) {A B : Type*[1]} (f : A →* B) :
homotopy_group_conn_nat n A →g homotopy_group_conn_nat n B :=
begin
cases n with n, { apply trivial_homomorphism },
cases n with n, { apply trivial_homomorphism },
exact π→g[n+2] f
end
2017-05-23 04:32:03 +00:00
definition homotopy_group_conn_functor :
Π(n : ) {A B : Type*[1]} (f : A →* B), πc[n] A →g πc[n] B
| (of_nat n) A B f := homotopy_group_conn_nat_functor n f
| (-[1+ n]) A B f := trivial_homomorphism _ _
2017-05-23 04:32:03 +00:00
notation `π→c[`:95 n:0 `]`:0 := homotopy_group_conn_functor n
section
open prod prod.ops fiber
parameters {A : → Type*[1]} (f : Π(n : ), A n →* A (n - 1)) [Hf : Πn, is_conn_fun 1 (f n)]
include Hf
local abbreviation I [constructor] := Z2
-- definition D_sequence : graded_module r I :=
-- λv, LeftModule_int_of_AbGroup (πc[v.2] (A (v.1)))
-- definition E_sequence : graded_module r I :=
-- λv, LeftModule_int_of_AbGroup (πc[v.2] (pconntype.mk (pfiber (f (v.1))) !Hf pt))
2017-05-23 04:32:03 +00:00
/- first need LES of these connected homotopy groups -/
-- definition exact_couple_sequence : exact_couple r I :=
-- exact_couple.mk D_sequence E_sequence sorry sorry sorry sorry sorry sorry
end
end pointed
namespace spectrum
open pointed int group is_trunc trunc is_conn prod prod.ops group fin chain_complex
section
parameters {A : → spectrum} (f : Π(s : ), A s →ₛ A (s - 1))
-- protected definition I [constructor] : Set := g ×g g
local abbreviation I [constructor] := Z2
definition D_sequence : graded_module r I :=
λv, LeftModule_int_of_AbGroup (πₛ[v.1] (A (v.2)))
definition E_sequence : graded_module r I :=
λv, LeftModule_int_of_AbGroup (πₛ[v.1] (sfiber (f (v.2))))
include f
definition i_sequence : D_sequence →gm D_sequence :=
begin
fapply graded_hom.mk, exact (prod_equiv_prod erfl (add_right_action (- 1))),
intro v,
apply lm_hom_int.mk, esimp,
exact πₛ→[v.1] (f v.2)
end
definition deg_j_seq_inv [constructor] : I ≃ I :=
prod_equiv_prod (add_right_action 1) (add_right_action (- 1))
definition fn_j_sequence [unfold 3] (x : I) :
D_sequence (deg_j_seq_inv x) →lm E_sequence x :=
begin
induction x with n s,
apply lm_hom_int.mk, esimp,
rexact shomotopy_groups_fun (f s) (n, 2)
end
definition j_sequence : D_sequence →gm E_sequence :=
graded_hom.mk_out deg_j_seq_inv⁻¹ᵉ fn_j_sequence
definition k_sequence : E_sequence →gm D_sequence :=
begin
fapply graded_hom.mk erfl,
intro v, induction v with n s,
apply lm_hom_int.mk, esimp,
exact πₛ→[n] (spoint (f s))
end
lemma ij_sequence : is_exact_gmod i_sequence j_sequence :=
begin
intro x y z p q,
revert y z q p,
refine eq.rec_right_inv (deg j_sequence) _,
intro y, induction x with n s, induction y with m t,
refine equiv_rect !pair_eq_pair_equiv⁻¹ᵉ _ _,
intro pq, esimp at pq, induction pq with p q,
revert t q, refine eq.rec_equiv (add_right_action (- 1)) _,
induction p using eq.rec_symm,
apply is_exact_homotopy homotopy.rfl,
{ symmetry, exact graded_hom_mk_out_destruct deg_j_seq_inv⁻¹ᵉ fn_j_sequence },
rexact is_exact_of_is_exact_at (is_exact_LES_of_shomotopy_groups (f s) (m, 2)),
end
lemma jk_sequence : is_exact_gmod j_sequence k_sequence :=
begin
intro x y z p q, induction q,
revert x y p, refine eq.rec_right_inv (deg j_sequence) _,
intro x, induction x with n s,
apply is_exact_homotopy,
{ symmetry, exact graded_hom_mk_out_destruct deg_j_seq_inv⁻¹ᵉ fn_j_sequence },
{ reflexivity },
rexact is_exact_of_is_exact_at (is_exact_LES_of_shomotopy_groups (f s) (n, 1)),
end
lemma ki_sequence : is_exact_gmod k_sequence i_sequence :=
begin
intro i j k p q, induction p, induction q, induction i with n s,
rexact is_exact_of_is_exact_at (is_exact_LES_of_shomotopy_groups (f s) (n, 0)),
end
definition exact_couple_sequence [constructor] : exact_couple r I :=
exact_couple.mk D_sequence E_sequence i_sequence j_sequence k_sequence
ij_sequence jk_sequence ki_sequence
open int
parameters (ub : ) (lb : )
2017-06-29 14:48:43 +00:00
(Aub : Π(s n : ), s ≥ ub + 1 → is_equiv (f s n))
(Alb : Π(s n : ), s ≤ lb n → is_contr (πₛ[n] (A s)))
definition B : I →
| (n, s) := max0 (s - lb n)
definition B' : I →
| (n, s) := max0 (ub - s)
definition B'' : I →
| (n, s) := max0 (ub + 1 - s)
lemma iterate_deg_i (n s : ) (m : ) : (deg i_sequence)^[m] (n, s) = (n, s - m) :=
begin
induction m with m IH,
{ exact prod_eq idp !sub_zero⁻¹ },
{ exact ap (deg i_sequence) IH ⬝ (prod_eq idp !sub_sub) }
end
lemma iterate_deg_i_inv (n s : ) (m : ) : (deg i_sequence)⁻¹ᵉ^[m] (n, s) = (n, s + m) :=
begin
induction m with m IH,
{ exact prod_eq idp !add_zero⁻¹ },
{ exact ap (deg i_sequence)⁻¹ᵉ IH ⬝ (prod_eq idp !add.assoc) }
end
include Aub Alb
lemma Dub ⦃x : I⦄ ⦃t : ℕ⦄ (h : B x ≤ t) : is_contr (D_sequence ((deg i_sequence)^[t] x)) :=
begin
apply Alb, induction x with n s, rewrite [iterate_deg_i],
apply sub_le_of_sub_le,
exact le_of_max0_le h,
end
lemma Dlb ⦃x : I⦄ ⦃t : ℕ⦄ (h : B' x ≤ t) :
is_surjective (i_sequence ((deg i_sequence)⁻¹ᵉ^[t+1] x)) :=
begin
apply is_surjective_of_is_equiv,
apply is_equiv_homotopy_group_functor,
apply Aub, induction x with n s,
rewrite [iterate_deg_i_inv, ▸*, of_nat_add, -add.assoc],
apply add_le_add_right,
apply le_add_of_sub_left_le,
exact le_of_max0_le h
end
lemma Elb ⦃x : I⦄ ⦃t : ℕ⦄ (h : B'' x ≤ t) : is_contr (E_sequence ((deg i_sequence)⁻¹ᵉ^[t] x)) :=
begin
apply is_contr_homotopy_group_of_is_contr,
apply is_contr_fiber_of_is_equiv,
apply Aub, induction x with n s,
rewrite [iterate_deg_i_inv, ▸*],
apply le_add_of_sub_left_le,
apply le_of_max0_le h,
end
definition is_bounded_sequence [constructor] : is_bounded exact_couple_sequence :=
is_bounded.mk B B' B'' Dub Dlb Elb
(by intro x; reflexivity)
begin
intro x, induction x with n s, apply pair_eq, esimp, esimp, esimp [j_sequence, i_sequence],
refine !add.assoc ⬝ ap (add s) !add.comm ⬝ !add.assoc⁻¹,
end
definition converges_to_sequence : (λn s, πₛ[n] (sfiber (f s))) ⟹ᵍ (λn, πₛ[n] (A ub)) :=
begin
fapply converges_to.mk,
{ exact exact_couple_sequence },
{ exact is_bounded_sequence },
{ intro n, exact ub },
{ intro n, change max0 (ub - ub) = 0, exact ap max0 (sub_self ub) },
{ intro ns, reflexivity },
{ intro n, reflexivity }
end
end
-- Uncomment the next line to see that the proof uses univalence, but that there are no holes
--('sorry') in the proof:
-- print axioms is_bounded_sequence
-- I think it depends on univalence in an essential way. The reason is that the long exact sequence
-- of homotopy groups already depends on univalence. Namely, in that proof we need to show that if f
-- : A → B and g : B → C are exact at B, then ∥A∥₀ → ∥B∥₀ → ∥C∥₀ is exact at ∥B∥₀. For this we need
-- that the equality |b|₀ = |b'|₀ is equivalent to ∥b = b'∥₋₁, which requires univalence.
end spectrum