2017-01-13 15:47:22 +00:00
|
|
|
|
-- Authors: Floris van Doorn
|
|
|
|
|
|
2018-08-19 11:52:20 +00:00
|
|
|
|
import homotopy.wedge homotopy.cofiber ..move_to_lib .pushout
|
2017-01-13 15:47:22 +00:00
|
|
|
|
|
2017-09-22 00:14:24 +00:00
|
|
|
|
open wedge pushout eq prod sum pointed equiv is_equiv unit lift bool option
|
2017-01-13 15:47:22 +00:00
|
|
|
|
|
|
|
|
|
namespace wedge
|
|
|
|
|
|
2017-09-22 00:14:24 +00:00
|
|
|
|
variable (A : Type*)
|
|
|
|
|
variables {A}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
definition add_point_of_wedge_pbool [unfold 2]
|
|
|
|
|
(x : A ∨ pbool) : A₊ :=
|
|
|
|
|
begin
|
|
|
|
|
induction x with a b,
|
|
|
|
|
{ exact some a },
|
|
|
|
|
{ induction b, exact some pt, exact none },
|
|
|
|
|
{ reflexivity }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition wedge_pbool_of_add_point [unfold 2]
|
|
|
|
|
(x : A₊) : A ∨ pbool :=
|
|
|
|
|
begin
|
|
|
|
|
induction x with a,
|
|
|
|
|
{ exact inr tt },
|
|
|
|
|
{ exact inl a }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
variables (A)
|
|
|
|
|
definition wedge_pbool_equiv_add_point [constructor] :
|
|
|
|
|
A ∨ pbool ≃ A₊ :=
|
|
|
|
|
equiv.MK add_point_of_wedge_pbool wedge_pbool_of_add_point
|
|
|
|
|
abstract begin
|
|
|
|
|
intro x, induction x,
|
|
|
|
|
{ reflexivity },
|
|
|
|
|
{ reflexivity }
|
|
|
|
|
end end
|
|
|
|
|
abstract begin
|
|
|
|
|
intro x, induction x with a b,
|
|
|
|
|
{ reflexivity },
|
|
|
|
|
{ induction b, exact wedge.glue, reflexivity },
|
|
|
|
|
{ apply eq_pathover_id_right,
|
|
|
|
|
refine ap_compose wedge_pbool_of_add_point _ _ ⬝ ap02 _ !elim_glue ⬝ph _,
|
|
|
|
|
exact square_of_eq idp }
|
|
|
|
|
end end
|
|
|
|
|
|
2017-07-20 17:01:22 +00:00
|
|
|
|
definition wedge_flip' [unfold 3] {A B : Type*} (x : A ∨ B) : B ∨ A :=
|
2017-01-13 15:47:22 +00:00
|
|
|
|
begin
|
|
|
|
|
induction x,
|
|
|
|
|
{ exact inr a },
|
|
|
|
|
{ exact inl a },
|
|
|
|
|
{ exact (glue ⋆)⁻¹ }
|
|
|
|
|
end
|
|
|
|
|
|
2017-07-20 17:01:22 +00:00
|
|
|
|
definition wedge_flip [constructor] (A B : Type*) : A ∨ B →* B ∨ A :=
|
|
|
|
|
pmap.mk wedge_flip' (glue ⋆)⁻¹
|
2017-01-13 15:47:22 +00:00
|
|
|
|
|
2017-07-20 17:01:22 +00:00
|
|
|
|
definition wedge_flip'_wedge_flip' [unfold 3] {A B : Type*} (x : A ∨ B) : wedge_flip' (wedge_flip' x) = x :=
|
2017-01-13 15:47:22 +00:00
|
|
|
|
begin
|
|
|
|
|
induction x,
|
|
|
|
|
{ reflexivity },
|
|
|
|
|
{ reflexivity },
|
2017-07-07 21:38:06 +00:00
|
|
|
|
{ apply eq_pathover_id_right,
|
2017-07-07 19:35:56 +00:00
|
|
|
|
apply hdeg_square,
|
2017-07-20 17:01:22 +00:00
|
|
|
|
exact ap_compose wedge_flip' _ _ ⬝ ap02 _ !elim_glue ⬝ !ap_inv ⬝ !elim_glue⁻² ⬝ !inv_inv }
|
2017-01-13 15:47:22 +00:00
|
|
|
|
end
|
|
|
|
|
|
2017-07-21 14:55:27 +00:00
|
|
|
|
definition wedge_flip_wedge_flip (A B : Type*) :
|
|
|
|
|
wedge_flip B A ∘* wedge_flip A B ~* pid (A ∨ B) :=
|
|
|
|
|
phomotopy.mk wedge_flip'_wedge_flip'
|
|
|
|
|
proof (whisker_right _ (!ap_inv ⬝ !wedge.elim_glue⁻²) ⬝ !con.left_inv)⁻¹ qed
|
2017-07-20 17:01:22 +00:00
|
|
|
|
|
|
|
|
|
definition wedge_comm [constructor] (A B : Type*) : A ∨ B ≃* B ∨ A :=
|
2017-01-13 15:47:22 +00:00
|
|
|
|
begin
|
2017-07-20 17:01:22 +00:00
|
|
|
|
fapply pequiv.MK,
|
|
|
|
|
{ exact wedge_flip A B },
|
|
|
|
|
{ exact wedge_flip B A },
|
|
|
|
|
{ exact wedge_flip_wedge_flip A B },
|
|
|
|
|
{ exact wedge_flip_wedge_flip B A }
|
2017-01-13 15:47:22 +00:00
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
-- TODO: wedge is associative
|
|
|
|
|
|
2017-07-07 19:35:56 +00:00
|
|
|
|
definition wedge_shift [unfold 3] {A B C : Type*} (x : (A ∨ B) ∨ C) : (A ∨ (B ∨ C)) :=
|
|
|
|
|
begin
|
|
|
|
|
induction x with l,
|
|
|
|
|
induction l with a,
|
|
|
|
|
exact inl a,
|
|
|
|
|
exact inr (inl a),
|
|
|
|
|
exact (glue ⋆),
|
|
|
|
|
exact inr (inr a),
|
|
|
|
|
-- exact elim_glue _ _ _,
|
2017-07-07 21:38:06 +00:00
|
|
|
|
exact sorry
|
2017-07-07 19:35:56 +00:00
|
|
|
|
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
|
2017-07-20 17:01:22 +00:00
|
|
|
|
definition wedge_pequiv [constructor] {A A' B B' : Type*} (a : A ≃* A') (b : B ≃* B') : A ∨ B ≃* A' ∨ B' :=
|
2017-06-08 20:11:02 +00:00
|
|
|
|
begin
|
|
|
|
|
fapply pequiv_of_equiv,
|
|
|
|
|
exact pushout.equiv !pconst !pconst !pconst !pconst !pequiv.refl a b (λdummy, respect_pt a) (λdummy, respect_pt b),
|
|
|
|
|
exact ap pushout.inl (respect_pt a)
|
|
|
|
|
end
|
|
|
|
|
|
2017-07-20 17:01:22 +00:00
|
|
|
|
definition plift_wedge.{u v} (A B : Type*) : plift.{u v} (A ∨ B) ≃* plift.{u v} A ∨ plift.{u v} B :=
|
2017-06-08 20:11:02 +00:00
|
|
|
|
calc plift.{u v} (A ∨ B) ≃* A ∨ B : by exact !pequiv_plift⁻¹ᵉ*
|
2017-07-20 17:01:22 +00:00
|
|
|
|
... ≃* plift.{u v} A ∨ plift.{u v} B : by exact wedge_pequiv !pequiv_plift !pequiv_plift
|
2017-06-08 20:11:02 +00:00
|
|
|
|
|
2018-08-19 11:52:20 +00:00
|
|
|
|
protected definition pelim [constructor] {X Y Z : Type*} (f : X →* Z) (g : Y →* Z) : X ∨ Y →* Z :=
|
|
|
|
|
pmap.mk (wedge.elim f g (respect_pt f ⬝ (respect_pt g)⁻¹)) (respect_pt f)
|
|
|
|
|
|
|
|
|
|
definition wedge_pr1 [constructor] (X Y : Type*) : X ∨ Y →* X := wedge.pelim (pid X) (pconst Y X)
|
|
|
|
|
definition wedge_pr2 [constructor] (X Y : Type*) : X ∨ Y →* Y := wedge.pelim (pconst X Y) (pid Y)
|
|
|
|
|
|
|
|
|
|
open fiber prod cofiber pi
|
|
|
|
|
|
|
|
|
|
variables {X Y : Type*}
|
|
|
|
|
definition pcofiber_pprod_incl1_of_pfiber_wedge_pr2' [unfold 3]
|
|
|
|
|
(x : pfiber (wedge_pr2 X Y)) : pcofiber (pprod_incl1 (Ω Y) X) :=
|
|
|
|
|
begin
|
|
|
|
|
induction x with x p, induction x with x y,
|
|
|
|
|
{ exact cod _ (p, x) },
|
|
|
|
|
{ exact pt },
|
|
|
|
|
{ apply arrow_pathover_constant_right, intro p, apply cofiber.glue }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
--set_option pp.all true
|
|
|
|
|
/-
|
|
|
|
|
X : Type* has a nondegenerate basepoint iff
|
|
|
|
|
it has the homotopy extension property iff
|
|
|
|
|
Π(f : X → Y) (y : Y) (p : f pt = y), ∃(g : X → Y) (h : f ~ g) (q : y = g pt), h pt = p ⬝ q
|
|
|
|
|
(or Σ?)
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
definition pfiber_wedge_pr2_of_pcofiber_pprod_incl1' [unfold 3]
|
|
|
|
|
(x : pcofiber (pprod_incl1 (Ω Y) X)) : pfiber (wedge_pr2 X Y) :=
|
|
|
|
|
begin
|
|
|
|
|
induction x with v p,
|
|
|
|
|
{ induction v with p x, exact fiber.mk (inl x) p },
|
|
|
|
|
{ exact fiber.mk (inr pt) idp },
|
|
|
|
|
{ esimp, apply fiber_eq (wedge.glue ⬝ ap inr p), symmetry,
|
|
|
|
|
refine !ap_con ⬝ !wedge.elim_glue ◾ (!ap_compose'⁻¹ ⬝ !ap_id) ⬝ !idp_con }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
variables (X Y)
|
|
|
|
|
definition pcofiber_pprod_incl1_of_pfiber_wedge_pr2 [constructor] :
|
|
|
|
|
pfiber (wedge_pr2 X Y) →* pcofiber (pprod_incl1 (Ω Y) X) :=
|
|
|
|
|
pmap.mk pcofiber_pprod_incl1_of_pfiber_wedge_pr2' (cofiber.glue idp)
|
|
|
|
|
|
|
|
|
|
-- definition pfiber_wedge_pr2_of_pprod [constructor] :
|
|
|
|
|
-- Ω Y ×* X →* pfiber (wedge_pr2 X Y) :=
|
|
|
|
|
-- begin
|
|
|
|
|
-- fapply pmap.mk,
|
|
|
|
|
-- { intro v, induction v with p x, exact fiber.mk (inl x) p },
|
|
|
|
|
-- { reflexivity }
|
|
|
|
|
-- end
|
|
|
|
|
|
|
|
|
|
definition pfiber_wedge_pr2_of_pcofiber_pprod_incl1 [constructor] :
|
|
|
|
|
pcofiber (pprod_incl1 (Ω Y) X) →* pfiber (wedge_pr2 X Y) :=
|
|
|
|
|
pmap.mk pfiber_wedge_pr2_of_pcofiber_pprod_incl1'
|
|
|
|
|
begin refine (fiber_eq wedge.glue _)⁻¹, exact !wedge.elim_glue⁻¹ end
|
|
|
|
|
-- pcofiber.elim (pfiber_wedge_pr2_of_pprod X Y)
|
|
|
|
|
-- begin
|
|
|
|
|
-- fapply phomotopy.mk,
|
|
|
|
|
-- { intro p, apply fiber_eq (wedge.glue ⬝ ap inr p ⬝ wedge.glue⁻¹), symmetry,
|
|
|
|
|
-- refine !ap_con ⬝ (!ap_con ⬝ !wedge.elim_glue ◾ (!ap_compose'⁻¹ ⬝ !ap_id)) ◾
|
|
|
|
|
-- (!ap_inv ⬝ !wedge.elim_glue⁻²) ⬝ _, exact idp_con p },
|
|
|
|
|
-- { esimp, refine fiber_eq2 (con.right_inv wedge.glue) _ ⬝ !fiber_eq_eta⁻¹,
|
|
|
|
|
-- rewrite [idp_con, ↑fiber_eq_pr2, con2_idp, whisker_right_idp, whisker_right_idp],
|
|
|
|
|
-- -- refine _ ⬝ (eq_bot_of_square (transpose (ap_con_right_inv_sq
|
|
|
|
|
-- -- (wedge.elim (λx : X, Point Y) (@id Y) idp) wedge.glue)))⁻¹,
|
|
|
|
|
-- -- refine whisker_right _ !con_inv ⬝ _,
|
|
|
|
|
-- exact sorry
|
|
|
|
|
-- }
|
|
|
|
|
-- end
|
|
|
|
|
|
|
|
|
|
--set_option pp.notation false
|
|
|
|
|
set_option pp.binder_types true
|
|
|
|
|
open sigma.ops
|
|
|
|
|
definition pfiber_wedge_pr2_pequiv_pcofiber_pprod_incl1 [constructor] :
|
|
|
|
|
pfiber (wedge_pr2 X Y) ≃* pcofiber (pprod_incl1 (Ω Y) X) :=
|
|
|
|
|
pequiv.MK (pcofiber_pprod_incl1_of_pfiber_wedge_pr2 _ _)
|
|
|
|
|
(pfiber_wedge_pr2_of_pcofiber_pprod_incl1 _ _)
|
|
|
|
|
abstract begin
|
|
|
|
|
fapply phomotopy.mk,
|
|
|
|
|
{ intro x, esimp, induction x with x p, induction x with x y,
|
|
|
|
|
{ reflexivity },
|
|
|
|
|
{ refine (fiber_eq (ap inr p) _)⁻¹, refine !ap_id⁻¹ ⬝ !ap_compose' },
|
|
|
|
|
{ apply @pi_pathover_right' _ _ _ _ (λ(xp : Σ(x : X ∨ Y), pppi.to_fun (wedge_pr2 X Y) x = pt),
|
|
|
|
|
pfiber_wedge_pr2_of_pcofiber_pprod_incl1'
|
|
|
|
|
(pcofiber_pprod_incl1_of_pfiber_wedge_pr2' (mk xp.1 xp.2)) = mk xp.1 xp.2),
|
|
|
|
|
intro p, apply eq_pathover, exact sorry }},
|
|
|
|
|
{ symmetry, refine !cofiber.elim_glue ◾ idp ⬝ _, apply con_inv_eq_idp,
|
|
|
|
|
apply ap (fiber_eq wedge.glue), esimp, rewrite [idp_con], refine !whisker_right_idp⁻² }
|
|
|
|
|
end end
|
|
|
|
|
abstract begin
|
|
|
|
|
exact sorry
|
|
|
|
|
end end
|
|
|
|
|
-- apply eq_pathover_id_right, refine ap_compose pcofiber_pprod_incl1_of_pfiber_wedge_pr2 _ _ ⬝ ap02 _ !elim_glue ⬝ph _
|
|
|
|
|
-- apply eq_pathover_id_right, refine ap_compose pfiber_wedge_pr2_of_pcofiber_pprod_incl1 _ _ ⬝ ap02 _ !elim_glue ⬝ph _
|
|
|
|
|
|
|
|
|
|
/- move -/
|
|
|
|
|
definition ap1_idp {A B : Type*} (f : A →* B) : Ω→ f idp = idp :=
|
|
|
|
|
respect_pt (Ω→ f)
|
|
|
|
|
|
|
|
|
|
definition ap1_phomotopy_idp {A B : Type*} {f g : A →* B} (h : f ~* g) :
|
|
|
|
|
Ω⇒ h idp = !respect_pt ⬝ !respect_pt⁻¹ :=
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
variables {A} {B : Type*} {f : A →* B} {g : B →* A} (h : f ∘* g ~* pid B)
|
|
|
|
|
include h
|
|
|
|
|
definition nar_of_noo' (p : Ω A) : Ω (pfiber f) ×* Ω B :=
|
|
|
|
|
begin
|
|
|
|
|
refine (_, Ω→ f p),
|
|
|
|
|
have z : Ω A →* Ω A, from pmap.mk (λp, Ω→ (g ∘* f) p ⬝ p⁻¹) proof (respect_pt (Ω→ (g ∘* f))) qed,
|
|
|
|
|
refine fiber_eq ((Ω→ g ∘* Ω→ f) p ⬝ p⁻¹) (!idp_con⁻¹ ⬝ whisker_right (respect_pt f) _⁻¹),
|
|
|
|
|
induction B with B b₀, induction f with f f₀, esimp at * ⊢, induction f₀,
|
|
|
|
|
refine !idp_con⁻¹ ⬝ ap1_con (pmap_of_map f pt) _ _ ⬝
|
|
|
|
|
((ap1_pcompose (pmap_of_map f pt) g _)⁻¹ ⬝ Ω⇒ h _ ⬝ ap1_pid _) ◾ ap1_inv _ _ ⬝ !con.right_inv
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition noo_of_nar' (x : Ω (pfiber f) ×* Ω B) : Ω A :=
|
|
|
|
|
begin
|
|
|
|
|
induction x with p q, exact Ω→ (ppoint f) p ⬝ Ω→ g q
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
variables (f g)
|
|
|
|
|
definition nar_of_noo [constructor] :
|
|
|
|
|
Ω A →* Ω (pfiber f) ×* Ω B :=
|
|
|
|
|
begin
|
|
|
|
|
refine pmap.mk (nar_of_noo' h) (prod_eq _ (ap1_gen_idp f (respect_pt f))),
|
|
|
|
|
esimp [nar_of_noo'],
|
|
|
|
|
refine fiber_eq2 (ap (ap1_gen _ _ _) (ap1_gen_idp f _) ⬝ !ap1_gen_idp) _ ⬝ !fiber_eq_eta⁻¹,
|
|
|
|
|
induction B with B b₀, induction f with f f₀, esimp at * ⊢, induction f₀, esimp,
|
|
|
|
|
refine (!idp_con ⬝ !whisker_right_idp) ◾ !whisker_right_idp ⬝ _, esimp [fiber_eq_pr2],
|
|
|
|
|
apply inv_con_eq_idp,
|
|
|
|
|
refine ap (ap02 f) !idp_con ⬝ _,
|
|
|
|
|
esimp [ap1_con, ap1_gen_con, ap1_inv, ap1_gen_inv],
|
|
|
|
|
refine _ ⬝ whisker_left _ (!con2_idp ⬝ !whisker_right_idp ⬝ idp ◾ ap1_phomotopy_idp h)⁻¹ᵖ,
|
|
|
|
|
esimp, exact sorry
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition noo_of_nar [constructor] :
|
|
|
|
|
Ω (pfiber f) ×* Ω B →* Ω A :=
|
|
|
|
|
pmap.mk (noo_of_nar' h) (respect_pt (Ω→ (ppoint f)) ◾ respect_pt (Ω→ g))
|
|
|
|
|
|
|
|
|
|
definition noo_pequiv_nar [constructor] :
|
|
|
|
|
Ω A ≃* Ω (pfiber f) ×* Ω B :=
|
|
|
|
|
pequiv.MK (nar_of_noo f g h) (noo_of_nar f g h)
|
|
|
|
|
abstract begin
|
|
|
|
|
exact sorry
|
|
|
|
|
end end
|
|
|
|
|
abstract begin
|
|
|
|
|
exact sorry
|
|
|
|
|
end end
|
|
|
|
|
-- apply eq_pathover_id_right, refine ap_compose nar_of_noo _ _ ⬝ ap02 _ !elim_glue ⬝ph _
|
|
|
|
|
-- apply eq_pathover_id_right, refine ap_compose noo_of_nar _ _ ⬝ ap02 _ !elim_glue ⬝ph _
|
|
|
|
|
|
|
|
|
|
definition loop_pequiv_of_cross_section {A B : Type*} (f : A →* B) (g : B →* A)
|
|
|
|
|
(h : f ∘* g ~* pid B) : Ω A ≃* Ω (pfiber f) ×* Ω B :=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-01-13 15:47:22 +00:00
|
|
|
|
end wedge
|