renamed pequiv.MK2 to pequiv.MK
This commit is contained in:
parent
b6fa4e8716
commit
0885a7ef4a
6 changed files with 13 additions and 19 deletions
|
@ -97,7 +97,7 @@ namespace EM
|
||||||
|
|
||||||
definition EM_equiv_EM [constructor] {G H : AbGroup} (φ : G ≃g H) (n : ℕ) : K G n ≃* K H n :=
|
definition EM_equiv_EM [constructor] {G H : AbGroup} (φ : G ≃g H) (n : ℕ) : K G n ≃* K H n :=
|
||||||
begin
|
begin
|
||||||
fapply pequiv.MK,
|
fapply pequiv.MK',
|
||||||
{ exact EM_functor φ n },
|
{ exact EM_functor φ n },
|
||||||
{ exact EM_functor φ⁻¹ᵍ n },
|
{ exact EM_functor φ⁻¹ᵍ n },
|
||||||
{ intro x, refine (EM_functor_gcompose φ⁻¹ᵍ φ n)⁻¹* x ⬝ _,
|
{ intro x, refine (EM_functor_gcompose φ⁻¹ᵍ φ n)⁻¹* x ⬝ _,
|
||||||
|
|
|
@ -905,7 +905,7 @@ namespace smash
|
||||||
|
|
||||||
definition smash_comm [constructor] : smash A B ≃* smash B A :=
|
definition smash_comm [constructor] : smash A B ≃* smash B A :=
|
||||||
begin
|
begin
|
||||||
apply pequiv.MK2, do 2 apply smash_flip_smash_flip
|
apply pequiv.MK, do 2 apply smash_flip_smash_flip
|
||||||
end
|
end
|
||||||
|
|
||||||
variables {A B}
|
variables {A B}
|
||||||
|
|
|
@ -404,7 +404,7 @@ namespace smash
|
||||||
definition smash_adjoint_pmap_natural_lm (C : Type*) (f : A →* A') (g : B →* B') :
|
definition smash_adjoint_pmap_natural_lm (C : Type*) (f : A →* A') (g : B →* B') :
|
||||||
psquare (smash_adjoint_pmap A' B' C) (smash_adjoint_pmap A B C)
|
psquare (smash_adjoint_pmap A' B' C) (smash_adjoint_pmap A B C)
|
||||||
(ppcompose_right (f ∧→ g)) (ppcompose_left (ppcompose_right f) ∘* ppcompose_right g) :=
|
(ppcompose_right (f ∧→ g)) (ppcompose_left (ppcompose_right f) ∘* ppcompose_right g) :=
|
||||||
(smash_pelim_natural_lm C g f)⁻¹ʰ*
|
proof (!smash_pelim_natural_lm)⁻¹ʰ* qed
|
||||||
|
|
||||||
/- Corollary: associativity of smash -/
|
/- Corollary: associativity of smash -/
|
||||||
|
|
||||||
|
@ -460,7 +460,7 @@ namespace smash
|
||||||
refine !smash_functor_pid_pcompose⁻¹* ⬝* _,
|
refine !smash_functor_pid_pcompose⁻¹* ⬝* _,
|
||||||
apply smash_functor_phomotopy phomotopy.rfl,
|
apply smash_functor_phomotopy phomotopy.rfl,
|
||||||
refine !passoc⁻¹* ⬝* _,
|
refine !passoc⁻¹* ⬝* _,
|
||||||
refine pwhisker_right _ !smash_adjoint_pmap_natural_right ⬝* _,
|
refine pwhisker_right _ (smash_adjoint_pmap_natural_right f) ⬝* _,
|
||||||
refine !passoc ⬝* _,
|
refine !passoc ⬝* _,
|
||||||
apply pwhisker_left,
|
apply pwhisker_left,
|
||||||
apply smash_elim_inv_natural_right
|
apply smash_elim_inv_natural_right
|
||||||
|
@ -468,7 +468,7 @@ namespace smash
|
||||||
|
|
||||||
definition smash_assoc (A B C : Type*) : A ∧ (B ∧ C) ≃* (A ∧ B) ∧ C :=
|
definition smash_assoc (A B C : Type*) : A ∧ (B ∧ C) ≃* (A ∧ B) ∧ C :=
|
||||||
begin
|
begin
|
||||||
fapply pequiv.MK2,
|
fapply pequiv.MK,
|
||||||
{ exact !smash_assoc_elim_equiv⁻¹ᵉ* !pid },
|
{ exact !smash_assoc_elim_equiv⁻¹ᵉ* !pid },
|
||||||
{ exact !smash_assoc_elim_equiv !pid },
|
{ exact !smash_assoc_elim_equiv !pid },
|
||||||
{ refine !smash_assoc_elim_inv_natural_right_pt ⬝* _,
|
{ refine !smash_assoc_elim_inv_natural_right_pt ⬝* _,
|
||||||
|
@ -538,7 +538,7 @@ namespace smash
|
||||||
|
|
||||||
definition smash_psusp (A B : Type*) : A ∧ ⅀ B ≃* ⅀(A ∧ B) :=
|
definition smash_psusp (A B : Type*) : A ∧ ⅀ B ≃* ⅀(A ∧ B) :=
|
||||||
begin
|
begin
|
||||||
fapply pequiv.MK2,
|
fapply pequiv.MK,
|
||||||
{ exact !smash_psusp_elim_equiv⁻¹ᵉ* !pid },
|
{ exact !smash_psusp_elim_equiv⁻¹ᵉ* !pid },
|
||||||
{ exact !smash_psusp_elim_equiv !pid },
|
{ exact !smash_psusp_elim_equiv !pid },
|
||||||
{ refine phomotopy_of_eq (!smash_psusp_elim_natural_right⁻¹ʰ* _) ⬝* _,
|
{ refine phomotopy_of_eq (!smash_psusp_elim_natural_right⁻¹ʰ* _) ⬝* _,
|
||||||
|
|
|
@ -189,8 +189,7 @@ namespace spectrum
|
||||||
(pwhisker_left (glue F n) (to_phomotopy n))
|
(pwhisker_left (glue F n) (to_phomotopy n))
|
||||||
(pwhisker_right (glue E n) (ap1_phomotopy (to_phomotopy (S n))))
|
(pwhisker_right (glue E n) (ap1_phomotopy (to_phomotopy (S n))))
|
||||||
(glue_square f n)
|
(glue_square f n)
|
||||||
(glue_square g n)
|
(glue_square g n))
|
||||||
)
|
|
||||||
|
|
||||||
infix ` ~ₛ `:50 := shomotopy
|
infix ` ~ₛ `:50 := shomotopy
|
||||||
|
|
||||||
|
@ -344,7 +343,7 @@ namespace spectrum
|
||||||
end
|
end
|
||||||
|
|
||||||
definition scompose_spoint {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y)
|
definition scompose_spoint {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y)
|
||||||
: f ∘ₛ spoint f ~ₛ szero (sfiber f) Y :=
|
: f ∘ₛ spoint f ~ₛ !szero :=
|
||||||
begin
|
begin
|
||||||
fapply shomotopy.mk,
|
fapply shomotopy.mk,
|
||||||
{ intro n, exact pcompose_ppoint (f n) },
|
{ intro n, exact pcompose_ppoint (f n) },
|
||||||
|
@ -479,9 +478,7 @@ namespace spectrum
|
||||||
definition spectrify_type_fun'_succ {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) :
|
definition spectrify_type_fun'_succ {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) :
|
||||||
spectrify_type_fun' X n (succ k) ~* Ω→ (spectrify_type_fun' X n k) :=
|
spectrify_type_fun' X n (succ k) ~* Ω→ (spectrify_type_fun' X n k) :=
|
||||||
begin
|
begin
|
||||||
refine _ ⬝* !ap1_pcompose⁻¹*,
|
refine !ap1_pcompose⁻¹*
|
||||||
apply !pwhisker_right,
|
|
||||||
refine !to_pinv_pequiv_MK2
|
|
||||||
end
|
end
|
||||||
|
|
||||||
definition spectrify_pequiv {N : succ_str} (X : gen_prespectrum N) (n : N) :
|
definition spectrify_pequiv {N : succ_str} (X : gen_prespectrum N) (n : N) :
|
||||||
|
@ -517,7 +514,7 @@ namespace spectrum
|
||||||
(equiv_gluen X n (k+1))⁻¹ᵉ* ~*
|
(equiv_gluen X n (k+1))⁻¹ᵉ* ~*
|
||||||
(equiv_gluen X n k)⁻¹ᵉ* ∘* Ω→[k] (equiv_glue X (n +' k))⁻¹ᵉ* ∘* !loopn_succ_in :=
|
(equiv_gluen X n k)⁻¹ᵉ* ∘* Ω→[k] (equiv_glue X (n +' k))⁻¹ᵉ* ∘* !loopn_succ_in :=
|
||||||
begin
|
begin
|
||||||
refine !trans_pinv ⬝* pwhisker_left _ _, refine !trans_pinv ⬝* _, refine !to_pinv_pequiv_MK2 ◾* !pinv_pinv
|
refine !trans_pinv ⬝* pwhisker_left _ _, refine !trans_pinv ⬝* _, refine pwhisker_left _ !pinv_pinv
|
||||||
end
|
end
|
||||||
|
|
||||||
definition spectrify_map {N : succ_str} {X : gen_prespectrum N} : X →ₛ spectrify X :=
|
definition spectrify_map {N : succ_str} {X : gen_prespectrum N} : X →ₛ spectrify X :=
|
||||||
|
@ -550,11 +547,8 @@ namespace spectrum
|
||||||
refine pwhisker_left _ (pwhisker_right _ (phomotopy_pinv_right_of_phomotopy (!loopn_succ_in_natural)⁻¹*)⁻¹*) ⬝* _,
|
refine pwhisker_left _ (pwhisker_right _ (phomotopy_pinv_right_of_phomotopy (!loopn_succ_in_natural)⁻¹*)⁻¹*) ⬝* _,
|
||||||
refine pwhisker_right _ !apn_pinv ⬝* _,
|
refine pwhisker_right _ !apn_pinv ⬝* _,
|
||||||
refine (phomotopy_pinv_left_of_phomotopy _)⁻¹*,
|
refine (phomotopy_pinv_left_of_phomotopy _)⁻¹*,
|
||||||
refine pwhisker_right _ !pmap_eta⁻¹* ⬝* _,
|
|
||||||
refine apn_psquare k _,
|
refine apn_psquare k _,
|
||||||
refine pwhisker_right _ _ ⬝* psquare_of_phomotopy !smap.glue_square,
|
refine psquare_of_phomotopy !smap.glue_square }
|
||||||
exact !pmap_eta⁻¹*
|
|
||||||
}
|
|
||||||
end
|
end
|
||||||
|
|
||||||
definition spectrify.elim {N : succ_str} {X : gen_prespectrum N} {Y : gen_spectrum N}
|
definition spectrify.elim {N : succ_str} {X : gen_prespectrum N} {Y : gen_spectrum N}
|
||||||
|
|
|
@ -29,7 +29,7 @@ namespace wedge
|
||||||
|
|
||||||
definition pwedge_comm [constructor] (A B : Type*) : A ∨ B ≃* B ∨ A :=
|
definition pwedge_comm [constructor] (A B : Type*) : A ∨ B ≃* B ∨ A :=
|
||||||
begin
|
begin
|
||||||
fapply pequiv.MK,
|
fapply pequiv.MK',
|
||||||
{ exact pwedge_flip A B },
|
{ exact pwedge_flip A B },
|
||||||
{ exact wedge_flip },
|
{ exact wedge_flip },
|
||||||
{ exact wedge_flip_wedge_flip },
|
{ exact wedge_flip_wedge_flip },
|
||||||
|
|
|
@ -309,7 +309,7 @@ namespace misc
|
||||||
definition ptrunc_component' (n : ℕ₋₂) (A : Type*) :
|
definition ptrunc_component' (n : ℕ₋₂) (A : Type*) :
|
||||||
ptrunc (n.+2) (component A) ≃* component (ptrunc (n.+2) A) :=
|
ptrunc (n.+2) (component A) ≃* component (ptrunc (n.+2) A) :=
|
||||||
begin
|
begin
|
||||||
fapply pequiv.MK,
|
fapply pequiv.MK',
|
||||||
{ exact ptrunc.elim (n.+2) (component_functor !ptr) },
|
{ exact ptrunc.elim (n.+2) (component_functor !ptr) },
|
||||||
{ intro x, cases x with x p, induction x with a,
|
{ intro x, cases x with x p, induction x with a,
|
||||||
refine tr ⟨a, _⟩,
|
refine tr ⟨a, _⟩,
|
||||||
|
|
Loading…
Reference in a new issue