renamed pequiv.MK2 to pequiv.MK

This commit is contained in:
Floris van Doorn 2017-06-14 22:55:10 -04:00
parent b6fa4e8716
commit 0885a7ef4a
6 changed files with 13 additions and 19 deletions

View file

@ -97,7 +97,7 @@ namespace EM
definition EM_equiv_EM [constructor] {G H : AbGroup} (φ : G ≃g H) (n : ) : K G n ≃* K H n := definition EM_equiv_EM [constructor] {G H : AbGroup} (φ : G ≃g H) (n : ) : K G n ≃* K H n :=
begin begin
fapply pequiv.MK, fapply pequiv.MK',
{ exact EM_functor φ n }, { exact EM_functor φ n },
{ exact EM_functor φ⁻¹ᵍ n }, { exact EM_functor φ⁻¹ᵍ n },
{ intro x, refine (EM_functor_gcompose φ⁻¹ᵍ φ n)⁻¹* x ⬝ _, { intro x, refine (EM_functor_gcompose φ⁻¹ᵍ φ n)⁻¹* x ⬝ _,

View file

@ -905,7 +905,7 @@ namespace smash
definition smash_comm [constructor] : smash A B ≃* smash B A := definition smash_comm [constructor] : smash A B ≃* smash B A :=
begin begin
apply pequiv.MK2, do 2 apply smash_flip_smash_flip apply pequiv.MK, do 2 apply smash_flip_smash_flip
end end
variables {A B} variables {A B}

View file

@ -404,7 +404,7 @@ namespace smash
definition smash_adjoint_pmap_natural_lm (C : Type*) (f : A →* A') (g : B →* B') : definition smash_adjoint_pmap_natural_lm (C : Type*) (f : A →* A') (g : B →* B') :
psquare (smash_adjoint_pmap A' B' C) (smash_adjoint_pmap A B C) psquare (smash_adjoint_pmap A' B' C) (smash_adjoint_pmap A B C)
(ppcompose_right (f ∧→ g)) (ppcompose_left (ppcompose_right f) ∘* ppcompose_right g) := (ppcompose_right (f ∧→ g)) (ppcompose_left (ppcompose_right f) ∘* ppcompose_right g) :=
(smash_pelim_natural_lm C g f)⁻¹ʰ* proof (!smash_pelim_natural_lm)⁻¹ʰ* qed
/- Corollary: associativity of smash -/ /- Corollary: associativity of smash -/
@ -460,7 +460,7 @@ namespace smash
refine !smash_functor_pid_pcompose⁻¹* ⬝* _, refine !smash_functor_pid_pcompose⁻¹* ⬝* _,
apply smash_functor_phomotopy phomotopy.rfl, apply smash_functor_phomotopy phomotopy.rfl,
refine !passoc⁻¹* ⬝* _, refine !passoc⁻¹* ⬝* _,
refine pwhisker_right _ !smash_adjoint_pmap_natural_right ⬝* _, refine pwhisker_right _ (smash_adjoint_pmap_natural_right f) ⬝* _,
refine !passoc ⬝* _, refine !passoc ⬝* _,
apply pwhisker_left, apply pwhisker_left,
apply smash_elim_inv_natural_right apply smash_elim_inv_natural_right
@ -468,7 +468,7 @@ namespace smash
definition smash_assoc (A B C : Type*) : A ∧ (B ∧ C) ≃* (A ∧ B) ∧ C := definition smash_assoc (A B C : Type*) : A ∧ (B ∧ C) ≃* (A ∧ B) ∧ C :=
begin begin
fapply pequiv.MK2, fapply pequiv.MK,
{ exact !smash_assoc_elim_equiv⁻¹ᵉ* !pid }, { exact !smash_assoc_elim_equiv⁻¹ᵉ* !pid },
{ exact !smash_assoc_elim_equiv !pid }, { exact !smash_assoc_elim_equiv !pid },
{ refine !smash_assoc_elim_inv_natural_right_pt ⬝* _, { refine !smash_assoc_elim_inv_natural_right_pt ⬝* _,
@ -538,7 +538,7 @@ namespace smash
definition smash_psusp (A B : Type*) : A ∧ ⅀ B ≃* ⅀(A ∧ B) := definition smash_psusp (A B : Type*) : A ∧ ⅀ B ≃* ⅀(A ∧ B) :=
begin begin
fapply pequiv.MK2, fapply pequiv.MK,
{ exact !smash_psusp_elim_equiv⁻¹ᵉ* !pid }, { exact !smash_psusp_elim_equiv⁻¹ᵉ* !pid },
{ exact !smash_psusp_elim_equiv !pid }, { exact !smash_psusp_elim_equiv !pid },
{ refine phomotopy_of_eq (!smash_psusp_elim_natural_right⁻¹ʰ* _) ⬝* _, { refine phomotopy_of_eq (!smash_psusp_elim_natural_right⁻¹ʰ* _) ⬝* _,

View file

@ -189,8 +189,7 @@ namespace spectrum
(pwhisker_left (glue F n) (to_phomotopy n)) (pwhisker_left (glue F n) (to_phomotopy n))
(pwhisker_right (glue E n) (ap1_phomotopy (to_phomotopy (S n)))) (pwhisker_right (glue E n) (ap1_phomotopy (to_phomotopy (S n))))
(glue_square f n) (glue_square f n)
(glue_square g n) (glue_square g n))
)
infix ` ~ₛ `:50 := shomotopy infix ` ~ₛ `:50 := shomotopy
@ -344,7 +343,7 @@ namespace spectrum
end end
definition scompose_spoint {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y) definition scompose_spoint {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y)
: f ∘ₛ spoint f ~ₛ szero (sfiber f) Y := : f ∘ₛ spoint f ~ₛ !szero :=
begin begin
fapply shomotopy.mk, fapply shomotopy.mk,
{ intro n, exact pcompose_ppoint (f n) }, { intro n, exact pcompose_ppoint (f n) },
@ -479,9 +478,7 @@ namespace spectrum
definition spectrify_type_fun'_succ {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ) : definition spectrify_type_fun'_succ {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ) :
spectrify_type_fun' X n (succ k) ~* Ω→ (spectrify_type_fun' X n k) := spectrify_type_fun' X n (succ k) ~* Ω→ (spectrify_type_fun' X n k) :=
begin begin
refine _ ⬝* !ap1_pcompose⁻¹*, refine !ap1_pcompose⁻¹*
apply !pwhisker_right,
refine !to_pinv_pequiv_MK2
end end
definition spectrify_pequiv {N : succ_str} (X : gen_prespectrum N) (n : N) : definition spectrify_pequiv {N : succ_str} (X : gen_prespectrum N) (n : N) :
@ -517,7 +514,7 @@ namespace spectrum
(equiv_gluen X n (k+1))⁻¹ᵉ* ~* (equiv_gluen X n (k+1))⁻¹ᵉ* ~*
(equiv_gluen X n k)⁻¹ᵉ* ∘* Ω→[k] (equiv_glue X (n +' k))⁻¹ᵉ* ∘* !loopn_succ_in := (equiv_gluen X n k)⁻¹ᵉ* ∘* Ω→[k] (equiv_glue X (n +' k))⁻¹ᵉ* ∘* !loopn_succ_in :=
begin begin
refine !trans_pinv ⬝* pwhisker_left _ _, refine !trans_pinv ⬝* _, refine !to_pinv_pequiv_MK2 ◾* !pinv_pinv refine !trans_pinv ⬝* pwhisker_left _ _, refine !trans_pinv ⬝* _, refine pwhisker_left _ !pinv_pinv
end end
definition spectrify_map {N : succ_str} {X : gen_prespectrum N} : X →ₛ spectrify X := definition spectrify_map {N : succ_str} {X : gen_prespectrum N} : X →ₛ spectrify X :=
@ -550,11 +547,8 @@ namespace spectrum
refine pwhisker_left _ (pwhisker_right _ (phomotopy_pinv_right_of_phomotopy (!loopn_succ_in_natural)⁻¹*)⁻¹*) ⬝* _, refine pwhisker_left _ (pwhisker_right _ (phomotopy_pinv_right_of_phomotopy (!loopn_succ_in_natural)⁻¹*)⁻¹*) ⬝* _,
refine pwhisker_right _ !apn_pinv ⬝* _, refine pwhisker_right _ !apn_pinv ⬝* _,
refine (phomotopy_pinv_left_of_phomotopy _)⁻¹*, refine (phomotopy_pinv_left_of_phomotopy _)⁻¹*,
refine pwhisker_right _ !pmap_eta⁻¹* ⬝* _,
refine apn_psquare k _, refine apn_psquare k _,
refine pwhisker_right _ _ ⬝* psquare_of_phomotopy !smap.glue_square, refine psquare_of_phomotopy !smap.glue_square }
exact !pmap_eta⁻¹*
}
end end
definition spectrify.elim {N : succ_str} {X : gen_prespectrum N} {Y : gen_spectrum N} definition spectrify.elim {N : succ_str} {X : gen_prespectrum N} {Y : gen_spectrum N}

View file

@ -29,7 +29,7 @@ namespace wedge
definition pwedge_comm [constructor] (A B : Type*) : A B ≃* B A := definition pwedge_comm [constructor] (A B : Type*) : A B ≃* B A :=
begin begin
fapply pequiv.MK, fapply pequiv.MK',
{ exact pwedge_flip A B }, { exact pwedge_flip A B },
{ exact wedge_flip }, { exact wedge_flip },
{ exact wedge_flip_wedge_flip }, { exact wedge_flip_wedge_flip },

View file

@ -309,7 +309,7 @@ namespace misc
definition ptrunc_component' (n : ℕ₋₂) (A : Type*) : definition ptrunc_component' (n : ℕ₋₂) (A : Type*) :
ptrunc (n.+2) (component A) ≃* component (ptrunc (n.+2) A) := ptrunc (n.+2) (component A) ≃* component (ptrunc (n.+2) A) :=
begin begin
fapply pequiv.MK, fapply pequiv.MK',
{ exact ptrunc.elim (n.+2) (component_functor !ptr) }, { exact ptrunc.elim (n.+2) (component_functor !ptr) },
{ intro x, cases x with x p, induction x with a, { intro x, cases x with x p, induction x with a,
refine tr ⟨a, _⟩, refine tr ⟨a, _⟩,