prove some properties about first quadrant spectral sequences where the degree of d is as usual

This commit is contained in:
Floris van Doorn 2018-10-05 18:01:43 -04:00
parent 0c4baacfcc
commit 266e37d9ed
2 changed files with 49 additions and 3 deletions

View file

@ -24,6 +24,7 @@ structure convergent_spectral_sequence.{u v w} {R : Ring} (E' :
(lb : ) (lb : )
(HDinf : Π(n : ), is_built_from (Dinf n) (HDinf : Π(n : ), is_built_from (Dinf n)
(λ(k : ), (λx, E (s₀ x) x) (n - (k + lb n), k + lb n))) (λ(k : ), (λx, E (s₀ x) x) (n - (k + lb n), k + lb n)))
/- todo: the current definition doesn't say that E (s₀ x) x is contractible for x.1 + x.2 = n and x.2 < lb n -/
definition convergent_spectral_sequence_g [reducible] (E' : → AbGroup) definition convergent_spectral_sequence_g [reducible] (E' : → AbGroup)
(Dinf : → AbGroup) : Type := (Dinf : → AbGroup) : Type :=
@ -139,5 +140,36 @@ namespace spectral_sequence
Einf c (n, s) ≃lm E' n s := Einf c (n, s) ≃lm E' n s :=
E_isomorphism0 c (λr Hr, H1 r) (λr Hr, H2 r) E_isomorphism0 c (λr Hr, H1 r) (λr Hr, H2 r)
/- we call a spectral sequence normal if it is a first-quadrant spectral sequence and the degree of d is what we expect -/
include c
structure is_normal : Type :=
(normal1 : Π{n} s, n < 0 → is_contr (E' n s))
(normal2 : Πn {s}, s < 0 → is_contr (E' n s))
(normal3 : Π(r : ), deg_d c r = (r+2, -(r+1)))
open is_normal
variable {c}
variable (d : is_normal c)
include d
definition stable_range {n s : } {r : } (H1 : n < r + 2) (H2 : s < r + 1) :
Einf c (n, s) ≃lm E c r (n, s) :=
begin
fapply Einf_isomorphism,
{ intro r' Hr', apply is_contr_E, apply normal1 d,
refine lt_of_le_of_lt (le_of_eq (ap (λx, n - x.1) (normal3 d r'))) _,
apply sub_lt_left_of_lt_add,
refine lt_of_lt_of_le H1 (le.trans _ (le_of_eq !add_zero⁻¹)),
exact add_le_add_right (of_nat_le_of_nat_of_le Hr') 2 },
{ intro r' Hr', apply is_contr_E, apply normal2 d,
refine lt_of_le_of_lt (le_of_eq (ap (λx, s + x.2) (normal3 d r'))) _,
change s - (r' + 1) < 0,
apply sub_lt_left_of_lt_add,
refine lt_of_lt_of_le H2 (le.trans _ (le_of_eq !add_zero⁻¹)),
exact add_le_add_right (of_nat_le_of_nat_of_le Hr') 1 },
end
/- some properties which use the degree of the spectral sequence we construct. For the AHSS and SSS the hypothesis is by reflexivity -/
-- definition foo
end spectral_sequence end spectral_sequence

View file

@ -244,9 +244,23 @@ section atiyah_hirzebruch
definition AHSS_deg_d (r : ) : definition AHSS_deg_d (r : ) :
convergent_spectral_sequence.deg_d atiyah_hirzebruch_spectral_sequence r = convergent_spectral_sequence.deg_d atiyah_hirzebruch_spectral_sequence r =
(r + 2, -(r + 1)) := (r + 2, -(r + 1)) :=
begin by reflexivity
reflexivity
end definition AHSS_lb (n : ) :
convergent_spectral_sequence.lb atiyah_hirzebruch_spectral_sequence n = -s₀ :=
by reflexivity
-- open nat
-- definition AHSS_ub (n : ) :
-- is_built_from.n₀ (convergent_spectral_sequence.HDinf atiyah_hirzebruch_spectral_sequence n) =
-- max0 (s₀ + n) + 1 :=
-- begin
-- -- refine refl (max (max0 (- - - -s₀ - (-(- -s₀ - -(s₀ - -n + -s₀) + - - -s₀) - 1)))
-- -- (max0 (max (s₀ + 1 - - - - -s₀) (s₀ + 1 - - - - -s₀)))) ⬝ _,
-- -- exact ap011 max (ap max0 (ap011 add (!neg_neg ⬝ !neg_neg) _)) _ ⬝ _,
-- exact sorry
-- end
end atiyah_hirzebruch end atiyah_hirzebruch