prove some properties about first quadrant spectral sequences where the degree of d is as usual
This commit is contained in:
parent
0c4baacfcc
commit
266e37d9ed
2 changed files with 49 additions and 3 deletions
|
@ -24,6 +24,7 @@ structure convergent_spectral_sequence.{u v w} {R : Ring} (E' : ℤ → ℤ →
|
||||||
(lb : ℤ → ℤ)
|
(lb : ℤ → ℤ)
|
||||||
(HDinf : Π(n : ℤ), is_built_from (Dinf n)
|
(HDinf : Π(n : ℤ), is_built_from (Dinf n)
|
||||||
(λ(k : ℕ), (λx, E (s₀ x) x) (n - (k + lb n), k + lb n)))
|
(λ(k : ℕ), (λx, E (s₀ x) x) (n - (k + lb n), k + lb n)))
|
||||||
|
/- todo: the current definition doesn't say that E (s₀ x) x is contractible for x.1 + x.2 = n and x.2 < lb n -/
|
||||||
|
|
||||||
definition convergent_spectral_sequence_g [reducible] (E' : ℤ → ℤ → AbGroup)
|
definition convergent_spectral_sequence_g [reducible] (E' : ℤ → ℤ → AbGroup)
|
||||||
(Dinf : ℤ → AbGroup) : Type :=
|
(Dinf : ℤ → AbGroup) : Type :=
|
||||||
|
@ -139,5 +140,36 @@ namespace spectral_sequence
|
||||||
Einf c (n, s) ≃lm E' n s :=
|
Einf c (n, s) ≃lm E' n s :=
|
||||||
E_isomorphism0 c (λr Hr, H1 r) (λr Hr, H2 r)
|
E_isomorphism0 c (λr Hr, H1 r) (λr Hr, H2 r)
|
||||||
|
|
||||||
|
/- we call a spectral sequence normal if it is a first-quadrant spectral sequence and the degree of d is what we expect -/
|
||||||
|
include c
|
||||||
|
structure is_normal : Type :=
|
||||||
|
(normal1 : Π{n} s, n < 0 → is_contr (E' n s))
|
||||||
|
(normal2 : Πn {s}, s < 0 → is_contr (E' n s))
|
||||||
|
(normal3 : Π(r : ℕ), deg_d c r = (r+2, -(r+1)))
|
||||||
|
open is_normal
|
||||||
|
variable {c}
|
||||||
|
variable (d : is_normal c)
|
||||||
|
include d
|
||||||
|
definition stable_range {n s : ℤ} {r : ℕ} (H1 : n < r + 2) (H2 : s < r + 1) :
|
||||||
|
Einf c (n, s) ≃lm E c r (n, s) :=
|
||||||
|
begin
|
||||||
|
fapply Einf_isomorphism,
|
||||||
|
{ intro r' Hr', apply is_contr_E, apply normal1 d,
|
||||||
|
refine lt_of_le_of_lt (le_of_eq (ap (λx, n - x.1) (normal3 d r'))) _,
|
||||||
|
apply sub_lt_left_of_lt_add,
|
||||||
|
refine lt_of_lt_of_le H1 (le.trans _ (le_of_eq !add_zero⁻¹)),
|
||||||
|
exact add_le_add_right (of_nat_le_of_nat_of_le Hr') 2 },
|
||||||
|
{ intro r' Hr', apply is_contr_E, apply normal2 d,
|
||||||
|
refine lt_of_le_of_lt (le_of_eq (ap (λx, s + x.2) (normal3 d r'))) _,
|
||||||
|
change s - (r' + 1) < 0,
|
||||||
|
apply sub_lt_left_of_lt_add,
|
||||||
|
refine lt_of_lt_of_le H2 (le.trans _ (le_of_eq !add_zero⁻¹)),
|
||||||
|
exact add_le_add_right (of_nat_le_of_nat_of_le Hr') 1 },
|
||||||
|
end
|
||||||
|
/- some properties which use the degree of the spectral sequence we construct. For the AHSS and SSS the hypothesis is by reflexivity -/
|
||||||
|
|
||||||
|
|
||||||
|
-- definition foo
|
||||||
|
|
||||||
|
|
||||||
end spectral_sequence
|
end spectral_sequence
|
||||||
|
|
|
@ -244,9 +244,23 @@ section atiyah_hirzebruch
|
||||||
definition AHSS_deg_d (r : ℕ) :
|
definition AHSS_deg_d (r : ℕ) :
|
||||||
convergent_spectral_sequence.deg_d atiyah_hirzebruch_spectral_sequence r =
|
convergent_spectral_sequence.deg_d atiyah_hirzebruch_spectral_sequence r =
|
||||||
(r + 2, -(r + 1)) :=
|
(r + 2, -(r + 1)) :=
|
||||||
begin
|
by reflexivity
|
||||||
reflexivity
|
|
||||||
end
|
definition AHSS_lb (n : ℤ) :
|
||||||
|
convergent_spectral_sequence.lb atiyah_hirzebruch_spectral_sequence n = -s₀ :=
|
||||||
|
by reflexivity
|
||||||
|
|
||||||
|
-- open nat
|
||||||
|
-- definition AHSS_ub (n : ℤ) :
|
||||||
|
-- is_built_from.n₀ (convergent_spectral_sequence.HDinf atiyah_hirzebruch_spectral_sequence n) =
|
||||||
|
-- max0 (s₀ + n) + 1 :=
|
||||||
|
-- begin
|
||||||
|
-- -- refine refl (max (max0 (- - - -s₀ - (-(- -s₀ - -(s₀ - -n + -s₀) + - - -s₀) - 1)))
|
||||||
|
-- -- (max0 (max (s₀ + 1 - - - - -s₀) (s₀ + 1 - - - - -s₀)))) ⬝ _,
|
||||||
|
|
||||||
|
-- -- exact ap011 max (ap max0 (ap011 add (!neg_neg ⬝ !neg_neg) _)) _ ⬝ _,
|
||||||
|
-- exact sorry
|
||||||
|
-- end
|
||||||
|
|
||||||
end atiyah_hirzebruch
|
end atiyah_hirzebruch
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue