finish proof that smash is the cofiber of the map from the wedge to the product

This commit is contained in:
Floris van Doorn 2017-01-05 20:02:41 +01:00
parent 6594be4292
commit 372ca7297c
3 changed files with 174 additions and 230 deletions

View file

@ -64,8 +64,6 @@ print apd10_ap_precompose_dependent
definition is_pushout2_pushout : @is_pushout2 _ _ _ _ f g inl inr glue := definition is_pushout2_pushout : @is_pushout2 _ _ _ _ f g inl inr glue :=
λX, to_is_equiv (pushout_arrow_equiv f g X ⬝e assoc_equiv_prod _) λX, to_is_equiv (pushout_arrow_equiv f g X ⬝e assoc_equiv_prod _)
-- set_option pp.implicit true
-- set_option pp.notation false
definition is_equiv_of_is_pushout2_simple [constructor] {A B C D : Type.{u₁}} definition is_equiv_of_is_pushout2_simple [constructor] {A B C D : Type.{u₁}}
{f : A → B} {g : A → C} {h : B → D} {k : C → D} (p : h ∘ f ~ k ∘ g) {f : A → B} {g : A → C} {h : B → D} {k : C → D} (p : h ∘ f ~ k ∘ g)
{h' : B → D'} {k' : C → D'} (p' : h' ∘ f ~ k' ∘ g) {h' : B → D'} {k' : C → D'} (p' : h' ∘ f ~ k' ∘ g)
@ -94,138 +92,110 @@ print apd10_ap_precompose_dependent
refine apd10 !apd10_eq_of_homotopy (f a) ⬝ph _ ⬝hp apd10 !apd10_eq_of_homotopy⁻¹ (g a), refine apd10 !apd10_eq_of_homotopy (f a) ⬝ph _ ⬝hp apd10 !apd10_eq_of_homotopy⁻¹ (g a),
refine ap_compose (pushout.elim h k p) _ _ ⬝pv _, refine ap_compose (pushout.elim h k p) _ _ ⬝pv _,
refine aps (pushout.elim h k p) _ ⬝vp (!elim_glue ⬝ !ap_id⁻¹), refine aps (pushout.elim h k p) _ ⬝vp (!elim_glue ⬝ !ap_id⁻¹),
esimp, exact sorry esimp, exact sorry
}, },
-- note q := @eq_of_is_contr _ H''
-- ⟨up ∘ pushout.elim h k p ∘ down ∘ (center' H').1,
-- (λb, ap (up ∘ pushout.elim h k p ∘ down) (prod.pr1 (center' H').2 b),
-- λc, ap (up ∘ pushout.elim h k p ∘ down) (prod.pr2 (center' H').2 c))⟩
-- ⟨up, (λx, idp, λx, idp)⟩,
-- exact ap down (ap10 q..1 d)
} }
end end
definition is_equiv_of_is_pushout2 [constructor] (H : is_pushout2 p) : D ≃ pushout f g :=
-- definition is_equiv_of_is_pushout2 [constructor] (H : is_pushout2 p) : D ≃ pushout f g :=
-- begin
-- fapply equiv.MK,
-- { exact down.{_ u₄} ∘ (cocone_of_map p _)⁻¹ᶠ ⟨(up ∘ inl, up ∘ inr), λa, ap up (glue a)⟩ },
-- { exact pushout.elim h k p },
-- { intro x, exact sorry
-- },
-- { intro d, apply eq_of_fn_eq_fn (equiv_lift D), esimp, revert d,
-- apply ap10,
-- apply eq_of_fn_eq_fn (equiv.mk _ (H (lift.{_ (max u₁ u₂ u₃)} D))),
-- fapply sigma_eq,
-- { esimp, fapply prod_eq,
-- apply eq_of_homotopy, intro b, apply ap up, esimp,
-- exact ap (pushout.elim h k p ∘ down.{_ u₄})
-- (pushout.inv_left p H ⟨(up ∘ inl, up ∘ inr), λa, ap up (glue a)⟩ b),
-- exact sorry },
-- { exact sorry },
-- -- note q := @eq_of_is_contr _ H''
-- -- ⟨up ∘ pushout.elim h k p ∘ down ∘ (center' H').1,
-- -- (λb, ap (up ∘ pushout.elim h k p ∘ down) (prod.pr1 (center' H').2 b),
-- -- λc, ap (up ∘ pushout.elim h k p ∘ down) (prod.pr2 (center' H').2 c))⟩
-- -- ⟨up, (λx, idp, λx, idp)⟩,
-- -- exact ap down (ap10 q..1 d)
-- }
-- end
definition pushout_compose_to [unfold 8] {A B C D : Type} {f : A → B} {g : A → C} {h : B → D}
(x : pushout h (@inl _ _ _ f g)) : pushout (h ∘ f) g :=
begin
induction x with d y b,
{ exact inl d },
{ induction y with b c a,
{ exact inl (h b) },
{ exact inr c },
{ exact glue a }},
{ reflexivity }
end
definition pushout_compose_from [unfold 8] {A B C D : Type} {f : A → B} {g : A → C} {h : B → D}
(x : pushout (h ∘ f) g) : pushout h (@inl _ _ _ f g) :=
begin
induction x with d c a,
{ exact inl d },
{ exact inr (inr c) },
{ exact glue (f a) ⬝ ap inr (glue a) }
end
definition pushout_compose [constructor] {A B C D : Type} (f : A → B) (g : A → C) (h : B → D) :
pushout h (@inl _ _ _ f g) ≃ pushout (h ∘ f) g :=
begin begin
fapply equiv.MK, fapply equiv.MK,
{ exact down.{_ u₄} ∘ (cocone_of_map p _)⁻¹ᶠ ⟨(up ∘ inl, up ∘ inr), λa, ap up (glue a)⟩ }, { exact pushout_compose_to },
{ exact pushout.elim h k p }, { exact pushout_compose_from },
{ intro x, exact sorry { intro x, induction x with d c a,
{ reflexivity },
}, { reflexivity },
{ intro d, apply eq_of_fn_eq_fn (equiv_lift D), esimp, revert d, { apply eq_pathover_id_right, apply hdeg_square,
apply ap10, refine ap_compose pushout_compose_to _ _ ⬝ ap02 _ !elim_glue ⬝ _,
apply eq_of_fn_eq_fn (equiv.mk _ (H (lift.{_ (max u₁ u₂ u₃)} D))), refine !ap_con ⬝ !elim_glue ◾ !ap_compose'⁻¹ ⬝ !idp_con ⬝ _, esimp, apply elim_glue }},
fapply sigma_eq, { intro x, induction x with d y b,
{ esimp, fapply prod_eq, { reflexivity },
apply eq_of_homotopy, intro b, apply ap up, esimp, { induction y with b c a,
exact ap (pushout.elim h k p ∘ down.{_ u₄}) { exact glue b },
(pushout.inv_left p H ⟨(up ∘ inl, up ∘ inr), λa, ap up (glue a)⟩ b), { reflexivity },
{ apply eq_pathover, refine ap_compose pushout_compose_from _ _ ⬝ph _,
exact sorry }, esimp, refine ap02 _ !elim_glue ⬝ !elim_glue ⬝ph _, apply square_of_eq, reflexivity }},
{ exact sorry }, { apply eq_pathover_id_right, esimp,
refine ap_compose pushout_compose_from _ _ ⬝ ap02 _ !elim_glue ⬝ph _, apply square_of_eq, reflexivity }}
-- note q := @eq_of_is_contr _ H''
-- ⟨up ∘ pushout.elim h k p ∘ down ∘ (center' H').1,
-- (λb, ap (up ∘ pushout.elim h k p ∘ down) (prod.pr1 (center' H').2 b),
-- λc, ap (up ∘ pushout.elim h k p ∘ down) (prod.pr2 (center' H').2 c))⟩
-- ⟨up, (λx, idp, λx, idp)⟩,
-- exact ap down (ap10 q..1 d)
}
end end
definition pushout_compose' {A B C D : Type} (f : A → B) (g : A → C) (h : B → D) :
-- definition is_equiv_of_is_pushout2 [constructor] (H : is_pushout2 p) : D ≃ pushout f g := pushout (@inl _ _ _ f g) h ≃ pushout g (h ∘ f) :=
-- begin calc
-- note H' := H (lift.{_ u₄} (pushout f g)), pushout (@inl _ _ _ f g) h ≃ pushout h (@inl _ _ _ f g) : pushout.symm
-- note bla := equiv.mk _ H', ... ≃ pushout (h ∘ f) g : pushout_compose
-- fapply equiv.MK, ... ≃ pushout g (h ∘ f) : pushout.symm
-- { exact down ∘ (center' H').1 },
-- { exact pushout.elim h k p },
-- { intro x, induction x with b c a,
-- { exact ap down (prod.pr1 (center' H').2 b) },
-- { exact ap down (prod.pr2 (center' H').2 c) },
-- { apply eq_pathover_id_right,
-- refine ap_compose (down ∘ (center' H').1) _ _ ⬝ ap02 _ !elim_glue ⬝ph _,
-- refine ap_compose down _ _ ⬝ph _ ⬝hp ((ap_compose' down up _)⁻¹ ⬝ !ap_id),
-- refine aps down _, }},
-- { intro d,
-- note H'' := H (up ∘ h) (up ∘ k) (λa, ap up.{_ (max u₁ u₂ u₃)} (p a)),
-- note q := @eq_of_is_contr _ H''
-- ⟨up ∘ pushout.elim h k p ∘ down ∘ (center' H').1,
-- (λb, ap (up ∘ pushout.elim h k p ∘ down) (prod.pr1 (center' H').2 b),
-- λc, ap (up ∘ pushout.elim h k p ∘ down) (prod.pr2 (center' H').2 c))⟩
-- ⟨up, (λx, idp, λx, idp)⟩,
-- exact ap down (ap10 q..1 d)
-- }
-- end
-- definition is_pushout_pushout : @is_pushout _ _ _ _ f g inl inr glue := definition pushout_compose_equiv {A B C D E : Type} (f : A → B) {g : A → C} {h : B → D} {hf : A → D}
-- begin {k : B → E} (e : E ≃ pushout f g) (p : k ~ e⁻¹ᵉ ∘ inl) (q : h ∘ f ~ hf) :
-- intro X h k p, pushout h k ≃ pushout hf g :=
-- fapply is_contr.mk, begin
-- { refine ⟨pushout.elim h k p, (λb, idp, λc, idp), λa, hdeg_square (elim_glue h k p a)⟩ }, refine _ ⬝e pushout_compose f g h ⬝e _,
-- { intro v, induction v with l v, induction v with v s, induction v with q r, { fapply pushout.equiv,
-- fapply sigma_eq, reflexivity,
-- esimp, apply eq_of_homotopy, intro x, induction x with b c a, reflexivity,
-- { exact (q b)⁻¹ }, exact e,
-- { exact (r c)⁻¹ }, reflexivity,
-- { apply eq_pathover, exact !elim_glue ⬝ph (s a)⁻¹ʰ }, exact homotopy_of_homotopy_inv_post e _ _ p },
-- } { fapply pushout.equiv,
-- end reflexivity,
-- definition is_pushout_of_is_equiv (e : D ≃ pushout f g) reflexivity,
-- : is_pushout reflexivity,
exact q,
-- variables {f g} reflexivity },
-- definition is_equiv_of_is_pushout [constructor] (H : is_pushout p) : D ≃ pushout f g := end
-- begin
-- note H' := H (up ∘ inl) (up ∘ inr) (λa, ap up.{_ u₄} (@glue _ _ _ f g a)),
-- fapply equiv.MK,
-- { exact down ∘ (center' H').1 },
-- { exact pushout.elim h k p },
-- { intro x, induction x with b c a,
-- { exact ap down (prod.pr1 (center' H').2 b) },
-- { exact ap down (prod.pr2 (center' H').2 c) },
-- { apply eq_pathover_id_right,
-- refine ap_compose (down ∘ (center' H').1) _ _ ⬝ ap02 _ !elim_glue ⬝ph _,
-- refine ap_compose down _ _ ⬝ph _ ⬝hp ((ap_compose' down up _)⁻¹ ⬝ !ap_id),
-- refine aps down _, }},
-- { intro d,
-- note H'' := H (up ∘ h) (up ∘ k) (λa, ap up.{_ (max u₁ u₂ u₃)} (p a)),
-- note q := @eq_of_is_contr _ H''
-- ⟨up ∘ pushout.elim h k p ∘ down ∘ (center' H').1,
-- (λb, ap (up ∘ pushout.elim h k p ∘ down) (prod.pr1 (center' H').2 b),
-- λc, ap (up ∘ pushout.elim h k p ∘ down) (prod.pr2 (center' H').2 c))⟩
-- ⟨up, (λx, idp, λx, idp)⟩,
-- exact ap down (ap10 q..1 d)
-- }
-- end
-- set_option pp.universes true
-- set_option pp.abbreviations false
-- definition is_equiv_of_is_pushout [constructor] (H : is_pushout p) (H : is_pushout p') : D ≃ D' :=
-- begin
-- note H' := H (up ∘ inl) (up ∘ inr) (λa, ap up.{_ u₄} (@glue _ _ _ f g a)),
-- fapply equiv.MK,
-- { exact down ∘ (center' H').1 },
-- { exact pushout.elim h k p },
-- { intro x, induction x with b c a,
-- { exact ap down (prod.pr1 (center' H').2 b) },
-- { exact ap down (prod.pr2 (center' H').2 c) },
-- { -- apply eq_pathover_id_right,
-- -- refine ap_compose (center' H').1 _ _ ⬝ ap02 _ !elim_glue ⬝ph _,
-- exact sorry }},
-- { intro d,
-- note H'' := H (up ∘ h) (up ∘ k) (λa, ap up.{_ (max u₁ u₂ u₃)} (p a)),
-- note q := @eq_of_is_contr _ H''
-- ⟨up ∘ pushout.elim h k p ∘ down ∘ (center' H').1,
-- (λb, ap (up ∘ pushout.elim h k p ∘ down) (prod.pr1 (center' H').2 b),
-- λc, ap (up ∘ pushout.elim h k p ∘ down) (prod.pr2 (center' H').2 c))⟩
-- ⟨up, (λx, idp, λx, idp)⟩,
-- exact ap down (ap10 q..1 d)
-- }
-- end
end pushout end pushout

View file

@ -1,8 +1,8 @@
-- Authors: Floris van Doorn -- Authors: Floris van Doorn
import homotopy.smash ..move_to_lib import homotopy.smash ..move_to_lib .pushout
open bool pointed eq equiv is_equiv sum bool prod unit circle cofiber prod.ops wedge open bool pointed eq equiv is_equiv sum bool prod unit circle cofiber prod.ops wedge is_trunc function
/- smash A (susp B) = susp (smash A B) <- this follows from associativity and smash with S¹ -/ /- smash A (susp B) = susp (smash A B) <- this follows from associativity and smash with S¹ -/
@ -13,9 +13,9 @@ open bool pointed eq equiv is_equiv sum bool prod unit circle cofiber prod.ops w
/- smash A B ≃ pcofiber (pprod_of_pwedge A B) -/ /- smash A B ≃ pcofiber (pprod_of_pwedge A B) -/
namespace smash variables {A B : Type*}
variables {A B : Type*} namespace smash
definition prod_of_wedge [unfold 3] (v : pwedge A B) : A × B := definition prod_of_wedge [unfold 3] (v : pwedge A B) : A × B :=
begin begin
@ -25,7 +25,71 @@ namespace smash
{ reflexivity } { reflexivity }
end end
definition wedge_of_sum [unfold 3] (v : A + B) : pwedge A B :=
begin
induction v with a b,
{ exact pushout.inl a },
{ exact pushout.inr b }
end
definition prod_of_wedge_of_sum [unfold 3] (v : A + B) : prod_of_wedge (wedge_of_sum v) = prod_of_sum v :=
begin
induction v with a b,
{ reflexivity },
{ reflexivity }
end
end smash open smash
namespace pushout
definition eq_inl_pushout_wedge_of_sum [unfold 3] (v : pwedge A B) :
inl pt = inl v :> pushout wedge_of_sum bool_of_sum :=
begin
induction v with a b,
{ exact glue (sum.inl pt) ⬝ (glue (sum.inl a))⁻¹, },
{ exact ap inl (glue ⋆) ⬝ glue (sum.inr pt) ⬝ (glue (sum.inr b))⁻¹, },
{ apply eq_pathover_constant_left,
refine !con.right_inv ⬝pv _ ⬝vp !con_inv_cancel_right⁻¹, exact square_of_eq idp }
end
variables (A B) variables (A B)
definition eq_inr_pushout_wedge_of_sum [unfold 3] (b : bool) :
inl pt = inr b :> pushout (@wedge_of_sum A B) bool_of_sum :=
begin
induction b,
{ exact glue (sum.inl pt) },
{ exact ap inl (glue ⋆) ⬝ glue (sum.inr pt) }
end
definition is_contr_pushout_wedge_of_sum : is_contr (pushout (@wedge_of_sum A B) bool_of_sum) :=
begin
apply is_contr.mk (pushout.inl pt),
intro x, induction x with v b w,
{ apply eq_inl_pushout_wedge_of_sum },
{ apply eq_inr_pushout_wedge_of_sum },
{ apply eq_pathover_constant_left_id_right,
induction w with a b,
{ apply whisker_rt, exact vrfl },
{ apply whisker_rt, exact vrfl }}
end
end pushout open pushout
namespace smash
variables (A B)
definition smash_equiv_cofiber : smash A B ≃ cofiber (@prod_of_wedge A B) :=
begin
unfold [smash, cofiber, smash'], symmetry,
refine !pushout.symm ⬝e _,
fapply pushout_compose_equiv wedge_of_sum,
{ symmetry, apply equiv_unit_of_is_contr, apply is_contr_pushout_wedge_of_sum },
{ intro x, reflexivity },
{ apply prod_of_wedge_of_sum }
end
definition pprod_of_pwedge [constructor] : pwedge A B →* A ×* B := definition pprod_of_pwedge [constructor] : pwedge A B →* A ×* B :=
begin begin
fconstructor, fconstructor,
@ -33,108 +97,10 @@ namespace smash
{ reflexivity } { reflexivity }
end end
variables {A B}
attribute pcofiber [constructor]
definition pcofiber_of_smash [unfold 3] (x : smash A B) : pcofiber (@pprod_of_pwedge A B) :=
begin
induction x,
{ exact pushout.inr (a, b) },
{ exact pushout.inl ⋆ },
{ exact pushout.inl ⋆ },
{ symmetry, exact pushout.glue (pushout.inl a) },
{ symmetry, exact pushout.glue (pushout.inr b) }
end
-- move
definition ap_eq_ap011 {A B C X : Type} (f : A → B → C) (g : X → A) (h : X → B) {x x' : X}
(p : x = x') : ap (λx, f (g x) (h x)) p = ap011 f (ap g p) (ap h p) :=
by induction p; reflexivity
definition smash_of_pcofiber_glue [unfold 3] (x : pwedge A B) :
Point (smash A B) = smash.mk (prod_of_wedge x).1 (prod_of_wedge x).2 :=
begin
induction x with a b: esimp,
{ apply gluel' },
{ apply gluer' },
{ apply eq_pathover_constant_left, refine _ ⬝hp (ap_eq_ap011 smash.mk _ _ _)⁻¹,
rewrite [ap_compose' prod.pr1, ap_compose' prod.pr2],
-- TODO: define elim_glue for wedges and remove k in krewrite
krewrite [pushout.elim_glue], esimp, apply vdeg_square,
exact !con.right_inv ⬝ !con.right_inv⁻¹ }
end
definition smash_of_pcofiber [unfold 3] (x : pcofiber (pprod_of_pwedge A B)) : smash A B :=
begin
induction x with x x,
{ exact smash.mk pt pt },
{ exact smash.mk x.1 x.2 },
{ exact smash_of_pcofiber_glue x }
end
set_option pp.binder_types true
-- maybe useful lemma:
open function pushout
definition pushout_glue_natural {A B C D E : Type} {f : A → B} {g : A → C} (a : A)
{h₁ : B → D} {k₁ : C → D} (p₁ : h₁ ∘ f ~ k₁ ∘ g)
{h₂ : B → E} {k₂ : C → E} (p₂ : h₂ ∘ f ~ k₂ ∘ g) :
@square (pushout (pushout.elim h₁ k₁ p₁) (pushout.elim h₂ k₂ p₂)) _ _ _ _
(pushout.glue (inl (f a))) (pushout.glue (inr (g a)))
(ap pushout.inl (p₁ a)) (ap pushout.inr (p₂ a)) :=
begin
apply square_of_eq, symmetry,
refine _ ⬝ (ap_con_eq_con_ap (pushout.glue) (pushout.glue a)) ⬝ _,
apply whisker_right, exact sorry,
apply whisker_left, exact sorry
end
definition pcofiber_of_smash_of_pcofiber (x : pcofiber (pprod_of_pwedge A B)) :
pcofiber_of_smash (smash_of_pcofiber x) = x :=
begin
induction x with x x,
{ refine (pushout.glue pt)⁻¹ },
{ induction x with a b, reflexivity },
{ apply eq_pathover_id_right, esimp,
refine ap_compose' pcofiber_of_smash smash_of_pcofiber (cofiber.glue x) ⬝ph _,
refine ap02 _ !cofiber.elim_glue' ⬝ph _,
induction x,
{ refine (!ap_con ⬝ !elim_gluel ◾ (!ap_inv ⬝ !elim_gluel⁻² ⬝ !inv_inv)) ⬝ph _,
apply whisker_tl, apply hrfl },
{ esimp, refine (!ap_con ⬝ !elim_gluer ◾ (!ap_inv ⬝ !elim_gluer⁻² ⬝ !inv_inv)) ⬝ph _,
apply square_of_eq, esimp, apply whisker_right, apply inverse2,
refine _ ⬝ (ap_con_eq_con_ap (pushout.glue) (wedge.glue A B))⁻¹ ⬝ _,
{ apply whisker_left, refine _ ⬝ (ap_compose' pushout.inr _ _)⁻¹,
exact ap02 _ !pushout.elim_glue⁻¹ },
{ refine whisker_right _ _ ⬝ !idp_con, apply ap_constant }},
{ exact sorry }}
end
definition smash_of_pcofiber_of_smash (x : smash A B) :
smash_of_pcofiber (pcofiber_of_smash x) = x :=
begin
induction x,
{ reflexivity },
{ apply gluel },
{ apply gluer },
{ apply eq_pathover_id_right, refine ap_compose smash_of_pcofiber _ _ ⬝ph _,
refine ap02 _ !elim_gluel ⬝ph _, refine !ap_inv ⬝ph _, refine !pushout.elim_glue⁻² ⬝ph _,
esimp, apply square_of_eq, refine !idp_con ⬝ _ ⬝ whisker_right _ !inv_con_inv_right⁻¹,
exact !inv_con_cancel_right⁻¹ },
{ apply eq_pathover_id_right, refine ap_compose smash_of_pcofiber _ _ ⬝ph _,
refine ap02 _ !elim_gluer ⬝ph _, refine !ap_inv ⬝ph _, refine !pushout.elim_glue⁻² ⬝ph _,
esimp, apply square_of_eq, refine !idp_con ⬝ _ ⬝ whisker_right _ !inv_con_inv_right⁻¹,
exact !inv_con_cancel_right⁻¹ },
end
variables (A B)
definition smash_pequiv_pcofiber [constructor] : smash A B ≃* pcofiber (pprod_of_pwedge A B) := definition smash_pequiv_pcofiber [constructor] : smash A B ≃* pcofiber (pprod_of_pwedge A B) :=
begin begin
fapply pequiv_of_equiv, apply pequiv_of_equiv (smash_equiv_cofiber A B),
{ fapply equiv.MK, exact (cofiber.glue pt)⁻¹
{ apply pcofiber_of_smash },
{ apply smash_of_pcofiber },
{ exact pcofiber_of_smash_of_pcofiber },
{ exact smash_of_pcofiber_of_smash }},
{ symmetry, exact pushout.glue (Point (pwedge A B)) }
end end
variables {A B} variables {A B}

View file

@ -5,8 +5,11 @@ import homotopy.sphere2 homotopy.cofiber homotopy.wedge
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group
is_trunc function sphere is_trunc function sphere
attribute pwedge [constructor] attribute equiv_unit_of_is_contr [constructor]
attribute pwedge pushout.symm pushout.equiv pushout.is_equiv_functor [constructor]
attribute is_succ_add_right is_succ_add_left is_succ_bit0 [constructor] attribute is_succ_add_right is_succ_add_left is_succ_bit0 [constructor]
attribute pushout.functor [unfold 16]
attribute pushout.transpose [unfold 6]
namespace eq namespace eq
@ -16,6 +19,11 @@ namespace eq
definition id_compose {A B : Type} (f : A → B) : id ∘ f ~ f := definition id_compose {A B : Type} (f : A → B) : id ∘ f ~ f :=
by reflexivity by reflexivity
-- move
definition ap_eq_ap011 {A B C X : Type} (f : A → B → C) (g : X → A) (h : X → B) {x x' : X}
(p : x = x') : ap (λx, f (g x) (h x)) p = ap011 f (ap g p) (ap h p) :=
by induction p; reflexivity
end eq end eq
namespace cofiber namespace cofiber