update README to reflect recent discussion
This commit is contained in:
parent
652ca1da84
commit
5a23744094
2 changed files with 68 additions and 3 deletions
19
README.md
19
README.md
|
@ -29,18 +29,35 @@ Jeremy Avigad, Steve Awodey, Ulrik Buchholtz, Floris van Doorn, Clive Newstead,
|
|||
|
||||
### Topology To Do:
|
||||
- HoTT Book sections 8.7, 8.8.
|
||||
- fiber sequence
|
||||
+ already have the LES
|
||||
+ need shift isomorphism
|
||||
+ Hom'ing into a fiber sequence gives another fiber sequence.
|
||||
- cofiber sequences
|
||||
+ Hom'ing out gives a fiber sequence: if `A → B → coker f` cofiber
|
||||
sequences, then `X^A → X^B → X^(coker f)` is a fiber sequence.
|
||||
- [prespectra](http://ncatlab.org/nlab/show/spectrum+object) and [spectra](http://ncatlab.org/nlab/show/spectrum), suspension
|
||||
+ try indexing on arbitrary successor structure
|
||||
+ think about equivariant spectra indexed by representations of `G`
|
||||
- [spectrification](http://ncatlab.org/nlab/show/higher+inductive+type#spectrification)
|
||||
+ adjoint to forgetful
|
||||
+ as sequential colimit, prove induction principle (if useful)
|
||||
+ connective spectrum: `is_conn n.-2 Eₙ`
|
||||
- [parametrized spectra](http://ncatlab.org/nlab/show/parametrized+spectrum), parametrized smash and hom between types and spectra
|
||||
- fiber and cofiber sequences of spectra, stability
|
||||
+ limits are levelwise
|
||||
+ colimits need to be spectrified
|
||||
- long exact sequences from (co)fiber sequences of spectra
|
||||
+ indexed on ℤ, need to splice together LES's
|
||||
- [Eilenberg-MacLane spaces](http://ncatlab.org/nlab/show/Eilenberg-Mac+Lane+space) and spectra
|
||||
- Postnikov towers of spectra
|
||||
+ basic definition already there
|
||||
+ fibers of Postnikov sequence unstably and stably
|
||||
- exact couple of a tower of spectra
|
||||
+ need to splice together LES's
|
||||
|
||||
### Already Done:
|
||||
- Most things in the HoTT Book up to Section 8.6 (see [this file](https://github.com/leanprover/lean/blob/master/hott/book.md))
|
||||
- pointed types, maps, homotopies and equivalences
|
||||
- definition of algebraic structures such as groups, rings, fields
|
||||
- some algebra: quotient, product, free groups.
|
||||
- some algebra: quotient, product, free groups.
|
||||
|
|
|
@ -14,6 +14,28 @@ namespace spherical_fibrations
|
|||
|
||||
definition pBG [constructor] (n : ℕ) : Type* := pointed.mk' (BG n)
|
||||
|
||||
definition G (n : ℕ) : Type₁ :=
|
||||
pt = pt :> BG n
|
||||
|
||||
definition G_char (n : ℕ) : G n ≃ (S n..-1 ≃ S n..-1) :=
|
||||
sorry
|
||||
|
||||
definition mirror (n : ℕ) : S n..-1 → G n :=
|
||||
begin
|
||||
intro v, apply to_inv (G_char n),
|
||||
exact sorry
|
||||
end
|
||||
|
||||
/-
|
||||
Can we give a fibration P : S n → Type, P base = F n = Ω(BF n) = (S. n ≃* S. n)
|
||||
and total space sigma P ≃ G (n+1) = Ω(BG (n+1)) = (S n.+1 ≃ S .n+1)
|
||||
|
||||
Yes, let eval : BG (n+1) → S n be the evaluation map
|
||||
-/
|
||||
|
||||
definition S_of_BG (n : ℕ) : Ω(pBG (n+1)) → S n :=
|
||||
λ f, f..1 ▸ base
|
||||
|
||||
definition BG_succ (n : ℕ) : BG n → BG (n+1) :=
|
||||
begin
|
||||
intro X, cases X with X p,
|
||||
|
@ -96,15 +118,41 @@ namespace spherical_fibrations
|
|||
- define BG∞ and BF∞ as colimits of BG n and BF n
|
||||
- Ω(BF n) = ΩⁿSⁿ₁ + ΩⁿSⁿ₋₁ (self-maps of degree ±1)
|
||||
- succ_BF n is (n - 2) connected (from Freudenthal)
|
||||
- pfiber (BG_of_BF n) ≃ S. n
|
||||
- pfiber (BG_of_BF n) ≃* S. n
|
||||
- π₁(BF n)=π₁(BG n)=ℤ/2ℤ
|
||||
- double covers BSG and BSF
|
||||
- O : BF n → BG 1 = Σ(A : Type), ∥ A = bool ∥
|
||||
- BSG n = sigma O
|
||||
- π₁(BSG n)=π₁(BSF n)=O
|
||||
- BSO(n), BSTop(n)
|
||||
- BSO(n),
|
||||
- find BF' n : Type₀ with BF' n ≃ BF n etc.
|
||||
- canonical bundle γₙ : ℝP(n) → ℝP∞=BO(1) → Type₀
|
||||
prove T(γₙ) = ℝP(n+1)
|
||||
- BG∞ = BF∞ (in fact = BGL₁(S), the group of units of the sphere spectrum)
|
||||
- clutching construction:
|
||||
any f : S n → SG(n) gives S n.+1 → BSG(n) (mut.mut. for O(n),SO(n),etc.)
|
||||
- all bundles on S 3 are trivial, incl. tangent bundle
|
||||
- Adams' result on vector fields on spheres:
|
||||
there are maximally ρ(n)-1 indep.sections of the tangent bundle of S (n-1)
|
||||
where ρ(n) is the n'th Radon-Hurwitz number.→
|
||||
-/
|
||||
|
||||
-- tangent bundle on S 2:
|
||||
|
||||
namespace two_sphere
|
||||
|
||||
definition tau : S 2 → BG 2 :=
|
||||
begin
|
||||
intro v, induction v with x, do 2 exact pt,
|
||||
fapply sigma_eq,
|
||||
{ apply ua, fapply equiv.MK,
|
||||
{ },
|
||||
{ },
|
||||
{ },
|
||||
{ } },
|
||||
{ }
|
||||
end
|
||||
|
||||
end two_sphere
|
||||
|
||||
end spherical_fibrations
|
||||
|
|
Loading…
Reference in a new issue