This commit is contained in:
Egbert Rijke 2016-11-03 16:42:22 -04:00
commit 699531a74c
5 changed files with 70 additions and 10 deletions

1
.gitignore vendored
View file

@ -13,6 +13,7 @@ GPATH
GRTAGS GRTAGS
GSYMS GSYMS
GTAGS GTAGS
TAGS
Makefile Makefile
*.cmake *.cmake
CMakeFiles/ CMakeFiles/

View file

@ -17,6 +17,9 @@ namespace group
/- Quotient Group -/ /- Quotient Group -/
definition homotopy_of_homomorphism_eq {f g : G →g G'}(p : f = g) : f ~ g :=
λx : G , ap010 group_fun p x
definition quotient_rel (g h : G) : Prop := N (g * h⁻¹) definition quotient_rel (g h : G) : Prop := N (g * h⁻¹)
variable {N} variable {N}
@ -190,7 +193,7 @@ namespace group
intro g, reflexivity intro g, reflexivity
end end
definition glift_unique (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) (k : quotient_group N →g G') definition gelim_unique (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) (k : quotient_group N →g G')
: ( k ∘g gq_map N ~ f ) → k ~ quotient_group_elim f H := : ( k ∘g gq_map N ~ f ) → k ~ quotient_group_elim f H :=
begin begin
intro K cg, induction cg using set_quotient.rec_prop with g, intro K cg, induction cg using set_quotient.rec_prop with g,
@ -200,7 +203,15 @@ namespace group
definition gq_universal_property (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) : definition gq_universal_property (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) :
is_contr (Σ(g : quotient_group N →g G'), g ∘g gq_map N = f) := is_contr (Σ(g : quotient_group N →g G'), g ∘g gq_map N = f) :=
sorry begin
fapply is_contr.mk,
-- give center of contraction
{ fapply sigma.mk, exact quotient_group_elim f H, apply homomorphism_eq, exact quotient_group_compute f H },
-- give contraction
{ intro pair, induction pair with g p, fapply sigma_eq,
{esimp, apply homomorphism_eq, symmetry, exact gelim_unique f H g (homotopy_of_homomorphism_eq p)},
{fapply is_prop.elimo} }
end
/- set generating normal subgroup -/ /- set generating normal subgroup -/

View file

@ -123,11 +123,12 @@ namespace group
(is_normal_subgroup : is_normal R) (is_normal_subgroup : is_normal R)
attribute subgroup_rel.R [coercion] attribute subgroup_rel.R [coercion]
abbreviation subgroup_to_rel [unfold 2] := @subgroup_rel.R abbreviation subgroup_to_rel [parsing_only] [unfold 2] := @subgroup_rel.R
abbreviation subgroup_has_one [unfold 2] := @subgroup_rel.Rone abbreviation subgroup_has_one [parsing_only] [unfold 2] := @subgroup_rel.Rone
abbreviation subgroup_respect_mul [unfold 2] := @subgroup_rel.Rmul abbreviation subgroup_respect_mul [parsing_only] [unfold 2] := @subgroup_rel.Rmul
abbreviation subgroup_respect_inv [unfold 2] := @subgroup_rel.Rinv abbreviation subgroup_respect_inv [parsing_only] [unfold 2] := @subgroup_rel.Rinv
abbreviation is_normal_subgroup [unfold 2] := @normal_subgroup_rel.is_normal_subgroup abbreviation is_normal_subgroup [parsing_only] [unfold 2] :=
@normal_subgroup_rel.is_normal_subgroup
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G} variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
{A B : CommGroup} {A B : CommGroup}

View file

@ -6,9 +6,9 @@
However, we define it (equivalently) as the pushout of the maps A + B → 2 and A + B → A × B. However, we define it (equivalently) as the pushout of the maps A + B → 2 and A + B → A × B.
-/ -/
import homotopy.circle homotopy.join types.pointed ..move_to_lib import homotopy.circle homotopy.join types.pointed homotopy.cofiber ..move_to_lib
open bool pointed eq equiv is_equiv sum bool prod unit circle open bool pointed eq equiv is_equiv sum bool prod unit circle cofiber
namespace smash namespace smash
@ -181,6 +181,38 @@ namespace smash
/- To prove: commutative, associative -/ /- To prove: commutative, associative -/
/- smash A B ≃ pcofiber (pprod_of_pwedge A B) -/
definition prod_of_pwedge [unfold 3] (v : pwedge A B) : A × B :=
begin
induction v with a b ,
{ exact (a, pt) },
{ exact (pt, b) },
{ reflexivity }
end
definition pprod_of_pwedge [constructor] : pwedge A B →* A ×* B :=
begin
fconstructor,
{ intro v, induction v with a b ,
{ exact (a, pt) },
{ exact (pt, b) },
{ reflexivity }},
{ reflexivity }
end
attribute pcofiber [constructor]
definition pcofiber_of_smash (x : smash A B) : pcofiber (@pprod_of_pwedge A B) :=
begin
induction x,
{ exact pushout.inr (a, b) },
{ exact pushout.inl ⋆ },
{ exact pushout.inl ⋆ },
{ symmetry, },
{ }
end
/- smash A S¹ = susp A -/ /- smash A S¹ = susp A -/
open susp open susp

View file

@ -7,7 +7,7 @@ open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc
attribute equiv.symm equiv.trans is_equiv.is_equiv_ap fiber.equiv_postcompose attribute equiv.symm equiv.trans is_equiv.is_equiv_ap fiber.equiv_postcompose
fiber.equiv_precompose pequiv.to_pmap pequiv._trans_of_to_pmap ghomotopy_group_succ_in fiber.equiv_precompose pequiv.to_pmap pequiv._trans_of_to_pmap ghomotopy_group_succ_in
isomorphism_of_eq pmap_bool_equiv sphere_equiv_bool psphere_pequiv_pbool fiber_eq_equiv isomorphism_of_eq pmap_bool_equiv sphere_equiv_bool psphere_pequiv_pbool fiber_eq_equiv int.equiv_succ
[constructor] [constructor]
attribute is_equiv.eq_of_fn_eq_fn' [unfold 3] attribute is_equiv.eq_of_fn_eq_fn' [unfold 3]
attribute isomorphism._trans_of_to_hom [unfold 3] attribute isomorphism._trans_of_to_hom [unfold 3]
@ -25,6 +25,21 @@ open sigma
namespace group namespace group
open is_trunc open is_trunc
-- some extra instances for type class inference
definition is_homomorphism_comm_homomorphism [instance] {G G' : CommGroup} (φ : G →g G')
: @is_homomorphism G G' (@comm_group.to_group _ (CommGroup.struct G))
(@comm_group.to_group _ (CommGroup.struct G')) φ :=
homomorphism.struct φ
definition is_homomorphism_comm_homomorphism1 [instance] {G G' : CommGroup} (φ : G →g G')
: @is_homomorphism G G' _
(@comm_group.to_group _ (CommGroup.struct G')) φ :=
homomorphism.struct φ
definition is_homomorphism_comm_homomorphism2 [instance] {G G' : CommGroup} (φ : G →g G')
: @is_homomorphism G G' (@comm_group.to_group _ (CommGroup.struct G)) _ φ :=
homomorphism.struct φ
theorem inv_eq_one {A : Type} [group A] {a : A} (H : a = 1) : a⁻¹ = 1 := theorem inv_eq_one {A : Type} [group A] {a : A} (H : a = 1) : a⁻¹ = 1 :=
iff.mpr (inv_eq_one_iff_eq_one a) H iff.mpr (inv_eq_one_iff_eq_one a) H