construct serre spectral sequence for any map
This commit is contained in:
parent
f8157068e4
commit
b31658c2f3
1 changed files with 13 additions and 2 deletions
|
@ -209,7 +209,9 @@ end unreduced_atiyah_hirzebruch
|
||||||
|
|
||||||
section serre
|
section serre
|
||||||
universe variable u
|
universe variable u
|
||||||
variables {X : Type} (x₀ : X) (F : X → Type) {X₁ X₂ : pType.{u}} (f : X₁ →* X₂)
|
variables {X : Type} (x₀ : X) (F : X → Type)
|
||||||
|
{X₁ X₂ : pType.{u}} (f : X₁ →* X₂)
|
||||||
|
{Z₁ Z₂ : Type.{u}} (g : Z₁ → Z₂)
|
||||||
(Y : spectrum) (s₀ : ℤ) (H : is_strunc s₀ Y)
|
(Y : spectrum) (s₀ : ℤ) (H : is_strunc s₀ Y)
|
||||||
|
|
||||||
include H
|
include H
|
||||||
|
@ -235,6 +237,15 @@ section serre
|
||||||
end
|
end
|
||||||
qed
|
qed
|
||||||
|
|
||||||
|
definition serre_convergence_of_map :
|
||||||
|
(λn s, uopH^-(n-s)[(x : Z₂), uH^-s[fiber g x, Y]]) ⟹ᵍ (λn, uH^-n[Z₁, Y]) :=
|
||||||
|
proof
|
||||||
|
converges_to_g_isomorphism
|
||||||
|
(serre_convergence (fiber g) Y s₀ H)
|
||||||
|
begin intro n s, reflexivity end
|
||||||
|
begin intro n, apply unreduced_cohomology_isomorphism, exact !sigma_fiber_equiv⁻¹ᵉ end
|
||||||
|
qed
|
||||||
|
|
||||||
definition serre_convergence_of_is_conn (H2 : is_conn 1 X) :
|
definition serre_convergence_of_is_conn (H2 : is_conn 1 X) :
|
||||||
(λn s, uoH^-(n-s)[X, uH^-s[F x₀, Y]]) ⟹ᵍ (λn, uH^-n[Σ(x : X), F x, Y]) :=
|
(λn s, uoH^-(n-s)[X, uH^-s[F x₀, Y]]) ⟹ᵍ (λn, uH^-n[Σ(x : X), F x, Y]) :=
|
||||||
proof
|
proof
|
||||||
|
@ -248,7 +259,7 @@ section serre
|
||||||
(λn s, uoH^-(n-s)[X₂, uH^-s[pfiber f, Y]]) ⟹ᵍ (λn, uH^-n[X₁, Y]) :=
|
(λn s, uoH^-(n-s)[X₂, uH^-s[pfiber f, Y]]) ⟹ᵍ (λn, uH^-n[X₁, Y]) :=
|
||||||
proof
|
proof
|
||||||
converges_to_g_isomorphism
|
converges_to_g_isomorphism
|
||||||
(serre_convergence_of_is_conn pt (λx, fiber f x) Y s₀ H H2)
|
(serre_convergence_of_is_conn pt (fiber f) Y s₀ H H2)
|
||||||
begin intro n s, reflexivity end
|
begin intro n s, reflexivity end
|
||||||
begin intro n, apply unreduced_cohomology_isomorphism, exact !sigma_fiber_equiv⁻¹ᵉ end
|
begin intro n, apply unreduced_cohomology_isomorphism, exact !sigma_fiber_equiv⁻¹ᵉ end
|
||||||
qed
|
qed
|
||||||
|
|
Loading…
Reference in a new issue