Spectral/set.hlean
2017-03-31 16:36:35 -04:00

123 lines
3.6 KiB
Text
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2017 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad
-/
import types.trunc .logic
open funext eq trunc is_trunc logic
definition set (X : Type) := X → Prop
namespace set
variable {X : Type}
/- membership and subset -/
definition mem (x : X) (a : set X) := a x
infix ∈ := mem
notation a ∉ b := ¬ mem a b
theorem ext {a b : set X} (H : ∀x, x ∈ a ↔ x ∈ b) : a = b :=
eq_of_homotopy (take x, propext (H x))
definition subset (a b : set X) : Prop := Prop.mk (∀⦃x⦄, x ∈ a → x ∈ b) _
infix ⊆ := subset
definition superset (s t : set X) : Prop := t ⊆ s
infix ⊇ := superset
theorem subset.refl (a : set X) : a ⊆ a := take x, assume H, H
theorem subset.trans {a b c : set X} (subab : a ⊆ b) (subbc : b ⊆ c) : a ⊆ c :=
take x, assume ax, subbc (subab ax)
theorem subset.antisymm {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b :=
ext (λ x, iff.intro (λ ina, h₁ ina) (λ inb, h₂ inb))
-- an alterantive name
theorem eq_of_subset_of_subset {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b :=
subset.antisymm h₁ h₂
theorem mem_of_subset_of_mem {s₁ s₂ : set X} {a : X} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ :=
assume h₁ h₂, h₁ _ h₂
/- empty set -/
definition empty : set X := λx, false
notation `∅` := empty
theorem not_mem_empty (x : X) : ¬ (x ∈ ∅) :=
assume H : x ∈ ∅, H
theorem mem_empty_eq (x : X) : x ∈ ∅ = false := rfl
theorem eq_empty_of_forall_not_mem {s : set X} (H : ∀ x, x ∉ s) : s = ∅ :=
ext (take x, iff.intro
(assume xs, absurd xs (H x))
(assume xe, absurd xe (not_mem_empty x)))
theorem ne_empty_of_mem {s : set X} {x : X} (H : x ∈ s) : s ≠ ∅ :=
begin intro Hs, rewrite Hs at H, apply not_mem_empty x H end
theorem empty_subset (s : set X) : ∅ ⊆ s :=
take x, assume H, empty.elim H
theorem eq_empty_of_subset_empty {s : set X} (H : s ⊆ ∅) : s = ∅ :=
subset.antisymm H (empty_subset s)
theorem subset_empty_iff (s : set X) : s ⊆ ∅ ↔ s = ∅ :=
iff.intro eq_empty_of_subset_empty (take xeq, by rewrite xeq; apply subset.refl ∅)
/- universal set -/
definition univ : set X := λx, true
theorem mem_univ (x : X) : x ∈ univ := trivial
theorem mem_univ_eq (x : X) : x ∈ univ = true := rfl
theorem empty_ne_univ [h : inhabited X] : (empty : set X) ≠ univ :=
assume H : empty = univ,
absurd (mem_univ (inhabited.value h)) (eq.rec_on H (not_mem_empty (arbitrary X)))
theorem subset_univ (s : set X) : s ⊆ univ := λ x H, unit.star
theorem eq_univ_of_univ_subset {s : set X} (H : univ ⊆ s) : s = univ :=
eq_of_subset_of_subset (subset_univ s) H
theorem eq_univ_of_forall {s : set X} (H : ∀ x, x ∈ s) : s = univ :=
ext (take x, iff.intro (assume H', unit.star) (assume H', H x))
/- set-builder notation -/
-- {x : X | P}
definition set_of (P : X → Prop) : set X := P
notation `{` binder ` | ` r:(scoped:1 P, set_of P) `}` := r
-- {x ∈ s | P}
definition sep (P : X → Prop) (s : set X) : set X := λx, x ∈ s ∧ P x
notation `{` binder ` ∈ ` s ` | ` r:(scoped:1 p, sep p s) `}` := r
/- insert -/
definition insert (x : X) (a : set X) : set X := {y : X | y = x y ∈ a}
-- '{x, y, z}
notation `'{`:max a:(foldr `, ` (x b, insert x b) ∅) `}`:0 := a
theorem subset_insert (x : X) (a : set X) : a ⊆ insert x a :=
take y, assume ys, or.inr ys
theorem mem_insert (x : X) (s : set X) : x ∈ insert x s :=
or.inl rfl
theorem mem_insert_of_mem {x : X} {s : set X} (y : X) : x ∈ s → x ∈ insert y s :=
assume h, or.inr h
theorem eq_or_mem_of_mem_insert {x a : X} {s : set X} : x ∈ insert a s → x = a x ∈ s :=
assume h, h
end set