Spectral/homotopy/smash.hlean

268 lines
10 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Authors: Floris van Doorn
import homotopy.smash ..move_to_lib
open bool pointed eq equiv is_equiv sum bool prod unit circle cofiber prod.ops wedge
/- smash A (susp B) = susp (smash A B) <- this follows from associativity and smash with S¹ -/
/- To prove: Σ(X × Y) ≃ ΣX ΣY Σ(X ∧ Y) (notation means suspension, wedge, smash),
and both are equivalent to the reduced join -/
/- To prove: associative -/
/- smash A B ≃ pcofiber (pprod_of_pwedge A B) -/
namespace smash
variables {A B : Type*}
definition prod_of_wedge [unfold 3] (v : pwedge A B) : A × B :=
begin
induction v with a b ,
{ exact (a, pt) },
{ exact (pt, b) },
{ reflexivity }
end
variables (A B)
definition pprod_of_pwedge [constructor] : pwedge A B →* A ×* B :=
begin
fconstructor,
{ exact prod_of_wedge },
{ reflexivity }
end
variables {A B}
attribute pcofiber [constructor]
definition pcofiber_of_smash [unfold 3] (x : smash A B) : pcofiber (@pprod_of_pwedge A B) :=
begin
induction x,
{ exact pushout.inr (a, b) },
{ exact pushout.inl ⋆ },
{ exact pushout.inl ⋆ },
{ symmetry, exact pushout.glue (pushout.inl a) },
{ symmetry, exact pushout.glue (pushout.inr b) }
end
-- move
definition ap_eq_ap011 {A B C X : Type} (f : A → B → C) (g : X → A) (h : X → B) {x x' : X}
(p : x = x') : ap (λx, f (g x) (h x)) p = ap011 f (ap g p) (ap h p) :=
by induction p; reflexivity
definition smash_of_pcofiber_glue [unfold 3] (x : pwedge A B) :
Point (smash A B) = smash.mk (prod_of_wedge x).1 (prod_of_wedge x).2 :=
begin
induction x with a b: esimp,
{ apply gluel' },
{ apply gluer' },
{ apply eq_pathover_constant_left, refine _ ⬝hp (ap_eq_ap011 smash.mk _ _ _)⁻¹,
rewrite [ap_compose' prod.pr1, ap_compose' prod.pr2],
-- TODO: define elim_glue for wedges and remove k in krewrite
krewrite [pushout.elim_glue], esimp, apply vdeg_square,
exact !con.right_inv ⬝ !con.right_inv⁻¹ }
end
definition smash_of_pcofiber [unfold 3] (x : pcofiber (pprod_of_pwedge A B)) : smash A B :=
begin
induction x with x x,
{ exact smash.mk pt pt },
{ exact smash.mk x.1 x.2 },
{ exact smash_of_pcofiber_glue x }
end
set_option pp.binder_types true
-- maybe useful lemma:
open function pushout
definition pushout_glue_natural {A B C D E : Type} {f : A → B} {g : A → C} (a : A)
{h₁ : B → D} {k₁ : C → D} (p₁ : h₁ ∘ f ~ k₁ ∘ g)
{h₂ : B → E} {k₂ : C → E} (p₂ : h₂ ∘ f ~ k₂ ∘ g) :
@square (pushout (pushout.elim h₁ k₁ p₁) (pushout.elim h₂ k₂ p₂)) _ _ _ _
(pushout.glue (inl (f a))) (pushout.glue (inr (g a)))
(ap pushout.inl (p₁ a)) (ap pushout.inr (p₂ a)) :=
begin
apply square_of_eq, symmetry,
refine _ ⬝ (ap_con_eq_con_ap (pushout.glue) (pushout.glue a)) ⬝ _,
apply whisker_right, exact sorry,
apply whisker_left, exact sorry
end
definition pcofiber_of_smash_of_pcofiber (x : pcofiber (pprod_of_pwedge A B)) :
pcofiber_of_smash (smash_of_pcofiber x) = x :=
begin
induction x with x x,
{ refine (pushout.glue pt)⁻¹ },
{ induction x with a b, reflexivity },
{ apply eq_pathover_id_right, esimp,
refine ap_compose' pcofiber_of_smash smash_of_pcofiber (cofiber.glue x) ⬝ph _,
refine ap02 _ !cofiber.elim_glue' ⬝ph _,
induction x,
{ refine (!ap_con ⬝ !elim_gluel ◾ (!ap_inv ⬝ !elim_gluel⁻² ⬝ !inv_inv)) ⬝ph _,
apply whisker_tl, apply hrfl },
{ esimp, refine (!ap_con ⬝ !elim_gluer ◾ (!ap_inv ⬝ !elim_gluer⁻² ⬝ !inv_inv)) ⬝ph _,
apply square_of_eq, esimp, apply whisker_right, apply inverse2,
refine _ ⬝ (ap_con_eq_con_ap (pushout.glue) (wedge.glue A B))⁻¹ ⬝ _,
{ apply whisker_left, refine _ ⬝ (ap_compose' pushout.inr _ _)⁻¹,
exact ap02 _ !pushout.elim_glue⁻¹ },
{ refine whisker_right _ _ ⬝ !idp_con, apply ap_constant }},
{ exact sorry }}
end
definition smash_of_pcofiber_of_smash (x : smash A B) :
smash_of_pcofiber (pcofiber_of_smash x) = x :=
begin
induction x,
{ reflexivity },
{ apply gluel },
{ apply gluer },
{ apply eq_pathover_id_right, refine ap_compose smash_of_pcofiber _ _ ⬝ph _,
refine ap02 _ !elim_gluel ⬝ph _, refine !ap_inv ⬝ph _, refine !pushout.elim_glue⁻² ⬝ph _,
esimp, apply square_of_eq, refine !idp_con ⬝ _ ⬝ whisker_right _ !inv_con_inv_right⁻¹,
exact !inv_con_cancel_right⁻¹ },
{ apply eq_pathover_id_right, refine ap_compose smash_of_pcofiber _ _ ⬝ph _,
refine ap02 _ !elim_gluer ⬝ph _, refine !ap_inv ⬝ph _, refine !pushout.elim_glue⁻² ⬝ph _,
esimp, apply square_of_eq, refine !idp_con ⬝ _ ⬝ whisker_right _ !inv_con_inv_right⁻¹,
exact !inv_con_cancel_right⁻¹ },
end
variables (A B)
definition smash_pequiv_pcofiber [constructor] : smash A B ≃* pcofiber (pprod_of_pwedge A B) :=
begin
fapply pequiv_of_equiv,
{ fapply equiv.MK,
{ apply pcofiber_of_smash },
{ apply smash_of_pcofiber },
{ exact pcofiber_of_smash_of_pcofiber },
{ exact smash_of_pcofiber_of_smash }},
{ symmetry, exact pushout.glue (Point (pwedge A B)) }
end
variables {A B}
/- commutativity -/
definition smash_flip (x : smash A B) : smash B A :=
begin
induction x,
{ exact smash.mk b a },
{ exact auxr },
{ exact auxl },
{ exact gluer a },
{ exact gluel b }
end
definition smash_flip_smash_flip (x : smash A B) : smash_flip (smash_flip x) = x :=
begin
induction x,
{ reflexivity },
{ reflexivity },
{ reflexivity },
{ apply eq_pathover_id_right,
refine ap_compose' smash_flip _ _ ⬝ ap02 _ !elim_gluel ⬝ !elim_gluer ⬝ph _,
apply hrfl },
{ apply eq_pathover_id_right,
refine ap_compose' smash_flip _ _ ⬝ ap02 _ !elim_gluer ⬝ !elim_gluel ⬝ph _,
apply hrfl }
end
definition smash_comm : smash A B ≃* smash B A :=
begin
fapply pequiv_of_equiv,
{ apply equiv.MK, do 2 exact smash_flip_smash_flip },
{ reflexivity }
end
/- smash A S¹ = susp A -/
open susp
definition psusp_of_smash_pcircle [unfold 2] (x : smash A S¹*) : psusp A :=
begin
induction x using smash.elim,
{ induction b, exact pt, exact merid a ⬝ (merid pt)⁻¹ },
{ exact pt },
{ exact pt },
{ reflexivity },
{ induction b, reflexivity, apply eq_pathover_constant_right, apply hdeg_square,
exact !elim_loop ⬝ !con.right_inv }
end
definition smash_pcircle_of_psusp [unfold 2] (x : psusp A) : smash A S¹* :=
begin
induction x,
{ exact pt },
{ exact pt },
{ exact gluel' pt a ⬝ ap (smash.mk a) loop ⬝ gluel' a pt },
end
-- the definitions below compile, but take a long time to do so and have sorry's in them
definition smash_pcircle_of_psusp_of_smash_pcircle_pt [unfold 3] (a : A) (x : S¹*) :
smash_pcircle_of_psusp (psusp_of_smash_pcircle (smash.mk a x)) = smash.mk a x :=
begin
induction x,
{ exact gluel' pt a },
{ exact abstract begin apply eq_pathover,
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
refine ap02 _ (elim_loop north (merid a ⬝ (merid pt)⁻¹)) ⬝ph _,
refine !ap_con ⬝ (!elim_merid ◾ (!ap_inv ⬝ !elim_merid⁻²)) ⬝ph _,
-- make everything below this a lemma defined by path induction?
apply square_of_eq, rewrite [+con.assoc], apply whisker_left, apply whisker_left,
symmetry, apply con_eq_of_eq_inv_con, esimp, apply con_eq_of_eq_con_inv,
refine _⁻² ⬝ !con_inv, refine _ ⬝ !con.assoc,
refine _ ⬝ whisker_right _ !inv_con_cancel_right⁻¹, refine _ ⬝ !con.right_inv⁻¹,
refine !con.right_inv ◾ _, refine _ ◾ !con.right_inv,
refine !ap_mk_right ⬝ !con.right_inv end end }
end
-- definition smash_pcircle_of_psusp_of_smash_pcircle_gluer_base (b : S¹*)
-- : square (smash_pcircle_of_psusp_of_smash_pcircle_pt (Point A) b)
-- (gluer pt)
-- (ap smash_pcircle_of_psusp (ap (λ a, psusp_of_smash_pcircle a) (gluer b)))
-- (gluer b) :=
-- begin
-- refine ap02 _ !elim_gluer ⬝ph _,
-- induction b,
-- { apply square_of_eq, exact whisker_right _ !con.right_inv },
-- { apply square_pathover', exact sorry }
-- end
exit
definition smash_pcircle_pequiv [constructor] (A : Type*) : smash A S¹* ≃* psusp A :=
begin
fapply pequiv_of_equiv,
{ fapply equiv.MK,
{ exact psusp_of_smash_pcircle },
{ exact smash_pcircle_of_psusp },
{ exact abstract begin intro x, induction x,
{ reflexivity },
{ exact merid pt },
{ apply eq_pathover_id_right,
refine ap_compose psusp_of_smash_pcircle _ _ ⬝ph _,
refine ap02 _ !elim_merid ⬝ph _,
rewrite [↑gluel', +ap_con, +ap_inv, -ap_compose'],
refine (_ ◾ _⁻² ◾ _ ◾ (_ ◾ _⁻²)) ⬝ph _,
rotate 5, do 2 (unfold [psusp_of_smash_pcircle]; apply elim_gluel),
esimp, apply elim_loop, do 2 (unfold [psusp_of_smash_pcircle]; apply elim_gluel),
refine idp_con (merid a ⬝ (merid (Point A))⁻¹) ⬝ph _,
apply square_of_eq, refine !idp_con ⬝ _⁻¹, apply inv_con_cancel_right } end end },
{ intro x, induction x using smash.rec,
{ exact smash_pcircle_of_psusp_of_smash_pcircle_pt a b },
{ exact gluel pt },
{ exact gluer pt },
{ apply eq_pathover_id_right,
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
unfold [psusp_of_smash_pcircle],
refine ap02 _ !elim_gluel ⬝ph _,
esimp, apply whisker_rt, exact vrfl },
{ apply eq_pathover_id_right,
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
unfold [psusp_of_smash_pcircle],
refine ap02 _ !elim_gluer ⬝ph _,
induction b,
{ apply square_of_eq, exact whisker_right _ !con.right_inv },
{ exact sorry}
}}},
{ reflexivity }
end
end smash
-- (X × A) → Y ≃ X → A → Y