lean2/hott/algebra/precategory/nat_trans.hlean

115 lines
4.5 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.precategory.nat_trans
Author: Floris van Doorn, Jakob von Raumer
-/
2014-12-12 04:14:53 +00:00
import .functor .iso
open eq category functor is_trunc equiv sigma.ops sigma is_equiv function pi funext iso
2014-12-12 04:14:53 +00:00
structure nat_trans {C D : Precategory} (F G : C ⇒ D) :=
(natural_map : Π (a : C), hom (F a) (G a))
(naturality : Π {a b : C} (f : hom a b), G f ∘ natural_map a = natural_map b ∘ F f)
2014-12-12 04:14:53 +00:00
namespace nat_trans
infixl `⟹`:25 := nat_trans -- \==>
variables {C D E : Precategory} {F G H I : C ⇒ D} {F' G' : D ⇒ E}
2014-12-12 04:14:53 +00:00
attribute natural_map [coercion]
2014-12-12 04:14:53 +00:00
protected definition compose [reducible] (η : G ⟹ H) (θ : F ⟹ G) : F ⟹ H :=
nat_trans.mk
2014-12-12 04:14:53 +00:00
(λ a, η a ∘ θ a)
(λ a b f,
calc
H f ∘ (η a ∘ θ a) = (H f ∘ η a) ∘ θ a : by rewrite assoc
... = (η b ∘ G f) ∘ θ a : by rewrite naturality
... = η b ∘ (G f ∘ θ a) : by rewrite assoc
... = η b ∘ (θ b ∘ F f) : by rewrite naturality
... = (η b ∘ θ b) ∘ F f : by rewrite assoc)
2014-12-12 04:14:53 +00:00
infixr `∘n`:60 := compose
protected definition id [reducible] {C D : Precategory} {F : functor C D} : nat_trans F F :=
mk (λa, id) (λa b f, !id_right ⬝ !id_left⁻¹)
protected definition ID [reducible] {C D : Precategory} (F : functor C D) : nat_trans F F :=
id
definition nat_trans_eq_mk' {η₁ η₂ : Π (a : C), hom (F a) (G a)}
(nat₁ : Π (a b : C) (f : hom a b), G f ∘ η₁ a = η₁ b ∘ F f)
(nat₂ : Π (a b : C) (f : hom a b), G f ∘ η₂ a = η₂ b ∘ F f)
(p : η₁ η₂)
: nat_trans.mk η₁ nat₁ = nat_trans.mk η₂ nat₂ :=
apD011 nat_trans.mk (eq_of_homotopy p) !is_hprop.elim
definition nat_trans_eq_mk {η₁ η₂ : F ⟹ G} : natural_map η₁ natural_map η₂ → η₁ = η₂ :=
nat_trans.rec_on η₁ (λf₁ nat₁, nat_trans.rec_on η₂ (λf₂ nat₂ p, !nat_trans_eq_mk' p))
protected definition assoc (η₃ : H ⟹ I) (η₂ : G ⟹ H) (η₁ : F ⟹ G) :
2014-12-12 19:19:06 +00:00
η₃ ∘n (η₂ ∘n η₁) = (η₃ ∘n η₂) ∘n η₁ :=
nat_trans_eq_mk (λa, !assoc)
2014-12-12 04:14:53 +00:00
protected definition id_left (η : F ⟹ G) : id ∘n η = η :=
nat_trans_eq_mk (λa, !id_left)
2014-12-12 04:14:53 +00:00
protected definition id_right (η : F ⟹ G) : η ∘n id = η :=
nat_trans_eq_mk (λa, !id_right)
protected definition sigma_char (F G : C ⇒ D) :
(Σ (η : Π (a : C), hom (F a) (G a)), Π (a b : C) (f : hom a b), G f ∘ η a = η b ∘ F f) ≃ (F ⟹ G) :=
begin
fapply equiv.mk,
intro S, apply nat_trans.mk, exact (S.2),
fapply adjointify,
intro H,
fapply sigma.mk,
intro a, exact (H a),
intros (a, b, f), exact (naturality H f),
intro η, apply nat_trans_eq_mk, intro a, apply idp,
intro S,
fapply sigma_eq,
apply eq_of_homotopy, intro a,
apply idp,
apply is_hprop.elim,
end
2014-12-12 04:14:53 +00:00
set_option apply.class_instance false
definition is_hset_nat_trans : is_hset (F ⟹ G) :=
begin
apply is_trunc_is_equiv_closed, apply (equiv.to_is_equiv !sigma_char),
apply is_trunc_sigma,
apply is_trunc_pi, intro a, exact (@homH (Precategory.carrier D) _ (F a) (G a)),
intro η, apply is_trunc_pi, intro a,
apply is_trunc_pi, intro b, apply is_trunc_pi, intro f,
apply is_trunc_eq, apply is_trunc_succ, exact (@homH (Precategory.carrier D) _ (F a) (G b)),
end
2014-12-12 04:14:53 +00:00
definition nat_trans_functor_compose [reducible] (η : G ⟹ H) (F : E ⇒ C) : G ∘f F ⟹ H ∘f F :=
nat_trans.mk
(λ a, η (F a))
(λ a b f, naturality η (F f))
definition functor_nat_trans_compose [reducible] (F : D ⇒ E) (η : G ⟹ H) : F ∘f G ⟹ F ∘f H :=
nat_trans.mk
(λ a, F (η a))
(λ a b f, calc
F (H f) ∘ F (η a) = F (H f ∘ η a) : respect_comp
... = F (η b ∘ G f) : by rewrite (naturality η f)
... = F (η b) ∘ F (G f) : respect_comp)
infixr `∘nf`:60 := nat_trans_functor_compose
infixr `∘fn`:60 := functor_nat_trans_compose
definition functor_nat_trans_compose_commute (η : F ⟹ G) (θ : F' ⟹ G')
: (θ ∘nf G) ∘n (F' ∘fn η) = (G' ∘fn η) ∘n (θ ∘nf F) :=
nat_trans_eq_mk (λc, (naturality θ (η c))⁻¹)
definition nat_trans_of_eq [reducible] (p : F = G) : F ⟹ G :=
nat_trans.mk (λc, hom_of_eq (ap010 to_fun_ob p c))
(λa b f, eq.rec_on p (!id_right ⬝ !id_left⁻¹))
end nat_trans