lean2/hott/algebra/category/groupoid.hlean

86 lines
2.8 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jakob von Raumer, Floris van Doorn
Ported from Coq HoTT
-/
import .iso algebra.bundled
open eq is_trunc iso category algebra nat unit
namespace category
structure groupoid [class] (ob : Type) extends parent : precategory ob :=
mk' :: (all_iso : Π ⦃a b : ob⦄ (f : hom a b), @is_iso ob parent a b f)
abbreviation all_iso := @groupoid.all_iso
attribute groupoid.all_iso [instance] [priority 3000]
attribute groupoid.to_precategory [unfold 2]
definition groupoid.mk [reducible] [constructor] {ob : Type} (C : precategory ob)
(H : Π (a b : ob) (f : a ⟶ b), is_iso f) : groupoid ob :=
precategory.rec_on C groupoid.mk' H
definition groupoid_of_group.{l} [constructor] (A : Type.{l}) [G : group A] :
groupoid.{0 l} unit :=
begin
fapply groupoid.mk; fapply precategory.mk: intros,
{ exact A},
{ exact _},
{ exact a_2 * a_1},
{ exact 1},
{ apply mul.assoc},
{ apply mul_one},
{ apply one_mul},
{ esimp [precategory.mk],
fapply is_iso.mk,
{ exact f⁻¹},
{ apply mul.right_inv},
{ apply mul.left_inv}},
end
definition hom_group [constructor] {A : Type} [G : groupoid A] (a : A) : group (hom a a) :=
begin
fapply group.mk,
apply is_set_hom,
intro f g, apply (comp f g),
intros f g h, apply (assoc f g h)⁻¹,
apply (ID a),
intro f, apply id_left,
intro f, apply id_right,
intro f, exact (iso.inverse f),
intro f, exact (iso.left_inverse f),
end
definition group_of_is_contr_groupoid {ob : Type} [H : is_contr ob]
[G : groupoid ob] : group (hom (center ob) (center ob)) := !hom_group
definition group_of_groupoid_unit [G : groupoid unit] : group (hom ⋆ ⋆) := !hom_group
-- Bundled version of categories
-- we don't use Groupoid.carrier explicitly, but rather use Groupoid.carrier (to_Precategory C)
structure Groupoid : Type :=
(carrier : Type)
(struct : groupoid carrier)
attribute Groupoid.struct [instance] [coercion]
definition Groupoid.to_Precategory [coercion] [reducible] [unfold 1] (C : Groupoid)
: Precategory :=
Precategory.mk (Groupoid.carrier C) _
attribute Groupoid._trans_of_to_Precategory_1 [unfold 1]
definition groupoid.Mk [reducible] [constructor] := Groupoid.mk
definition groupoid.MK [reducible] [constructor] (C : Precategory)
(H : Π (a b : C) (f : a ⟶ b), is_iso f) : Groupoid :=
Groupoid.mk C (groupoid.mk C H)
definition Groupoid.eta [unfold 1] (C : Groupoid) : Groupoid.mk C C = C :=
Groupoid.rec (λob c, idp) C
definition Groupoid_of_Group [constructor] (G : Group) : Groupoid :=
Groupoid.mk unit (groupoid_of_group G)
end category