lean2/library/data/set/function.lean

400 lines
13 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad, Andrew Zipperer, Haitao Zhang
Functions between subsets of finite types.
-/
import .basic
open function eq.ops
namespace set
variables {X Y Z : Type}
/- preimages -/
definition preimage {A B:Type} (f : A → B) (Y : set B) : set A := { x | f x ∈ Y }
notation f ` '- ` s := preimage f s
theorem mem_preimage_iff (f : X → Y) (a : set Y) (x : X) :
f x ∈ a ↔ x ∈ f '- a :=
!iff.refl
theorem mem_preimage {f : X → Y} {a : set Y} {x : X} (H : f x ∈ a) :
x ∈ f '- a := H
theorem mem_of_mem_preimage {f : X → Y} {a : set Y} {x : X} (H : x ∈ f '- a) :
f x ∈ a :=
proof H qed
theorem preimage_comp (f : Y → Z) (g : X → Y) (a : set Z) :
(f ∘ g) '- a = g '- (f '- a) :=
ext (take x, !iff.refl)
lemma image_subset_iff {A B : Type} {f : A → B} {X : set A} {Y : set B} :
f ' X ⊆ Y ↔ X ⊆ f '- Y :=
@bounded_forall_image_iff A B f X Y
theorem preimage_subset {a b : set Y} (f : X → Y) (H : a ⊆ b) :
f '- a ⊆ f '- b :=
λ x H', proof @H (f x) H' qed
theorem preimage_id (s : set Y) : (λx, x) '- s = s :=
ext (take x, !iff.refl)
theorem preimage_union (f : X → Y) (s t : set Y) :
f '- (s t) = f '- s f '- t :=
ext (take x, !iff.refl)
theorem preimage_inter (f : X → Y) (s t : set Y) :
f '- (s ∩ t) = f '- s ∩ f '- t :=
ext (take x, !iff.refl)
theorem preimage_compl (f : X → Y) (s : set Y) :
f '- (-s) = -(f '- s) :=
ext (take x, !iff.refl)
theorem preimage_diff (f : X → Y) (s t : set Y) :
f '- (s \ t) = f '- s \ f '- t :=
ext (take x, !iff.refl)
theorem image_preimage_subset (f : X → Y) (s : set Y) :
f ' (f '- s) ⊆ s :=
take y, suppose y ∈ f ' (f '- s),
obtain x [xfis fxeqy], from this,
show y ∈ s, by rewrite -fxeqy; exact xfis
theorem subset_preimage_image (s : set X) (f : X → Y) :
s ⊆ f '- (f ' s) :=
take x, suppose x ∈ s,
show f x ∈ f ' s, from mem_image_of_mem f this
theorem inter_preimage_subset (s : set X) (t : set Y) (f : X → Y) :
s ∩ f '- t ⊆ f '- (f ' s ∩ t) :=
take x, assume H : x ∈ s ∩ f '- t,
mem_preimage (show f x ∈ f ' s ∩ t,
from and.intro (mem_image_of_mem f (and.left H)) (mem_of_mem_preimage (and.right H)))
theorem union_preimage_subset (s : set X) (t : set Y) (f : X → Y) :
s f '- t ⊆ f '- (f ' s t) :=
take x, assume H : x ∈ s f '- t,
mem_preimage (show f x ∈ f ' s t,
from or.elim H
(suppose x ∈ s, or.inl (mem_image_of_mem f this))
(suppose x ∈ f '- t, or.inr (mem_of_mem_preimage this)))
theorem image_inter (f : X → Y) (s : set X) (t : set Y) :
f ' s ∩ t = f ' (s ∩ f '- t) :=
ext (take y, iff.intro
(suppose y ∈ f ' s ∩ t,
obtain [x [xs fxeqy]] yt, from this,
have x ∈ s ∩ f '- t,
from and.intro xs (mem_preimage (show f x ∈ t, by rewrite fxeqy; exact yt)),
mem_image this fxeqy)
(suppose y ∈ f ' (s ∩ f '- t),
obtain x [[xs xfit] fxeqy], from this,
and.intro (mem_image xs fxeqy)
(show y ∈ t, by rewrite -fxeqy; exact mem_of_mem_preimage xfit)))
theorem image_union_supset (f : X → Y) (s : set X) (t : set Y) :
f ' s t ⊇ f ' (s f '- t) :=
take y, assume H,
obtain x [xmem fxeqy], from H,
or.elim xmem
(suppose x ∈ s, or.inl (mem_image this fxeqy))
(suppose x ∈ f '- t, or.inr (show y ∈ t, by+ rewrite -fxeqy; exact mem_of_mem_preimage this))
/- maps to -/
definition maps_to [reducible] (f : X → Y) (a : set X) (b : set Y) : Prop := ∀⦃x⦄, x ∈ a → f x ∈ b
theorem maps_to_of_eq_on {f1 f2 : X → Y} {a : set X} {b : set Y} (eq_on_a : eq_on f1 f2 a)
(maps_to_f1 : maps_to f1 a b) :
maps_to f2 a b :=
take x,
assume xa : x ∈ a,
have H : f1 x ∈ b, from maps_to_f1 xa,
show f2 x ∈ b, from eq_on_a xa ▸ H
theorem maps_to_compose {g : Y → Z} {f : X → Y} {a : set X} {b : set Y} {c : set Z}
(H1 : maps_to g b c) (H2 : maps_to f a b) : maps_to (g ∘ f) a c :=
take x, assume H : x ∈ a, H1 (H2 H)
theorem maps_to_univ_univ (f : X → Y) : maps_to f univ univ :=
take x, assume H, trivial
theorem image_subset_of_maps_to_of_subset {f : X → Y} {a : set X} {b : set Y} (mfab : maps_to f a b)
2015-09-25 03:38:52 +00:00
{c : set X} (csuba : c ⊆ a) :
f ' c ⊆ b :=
2015-09-25 03:38:52 +00:00
take y,
suppose y ∈ f ' c,
2015-09-25 03:38:52 +00:00
obtain x [(xc : x ∈ c) (yeq : f x = y)], from this,
have x ∈ a, from csuba `x ∈ c`,
have f x ∈ b, from mfab this,
show y ∈ b, from yeq ▸ this
theorem image_subset_of_maps_to {f : X → Y} {a : set X} {b : set Y} (mfab : maps_to f a b) :
f ' a ⊆ b :=
image_subset_of_maps_to_of_subset mfab (subset.refl a)
/- injectivity -/
definition inj_on [reducible] (f : X → Y) (a : set X) : Prop :=
∀⦃x1 x2 : X⦄, x1 ∈ a → x2 ∈ a → f x1 = f x2 → x1 = x2
theorem inj_on_empty (f : X → Y) : inj_on f ∅ :=
take x₁ x₂, assume H₁ H₂ H₃, false.elim H₁
theorem inj_on_of_eq_on {f1 f2 : X → Y} {a : set X} (eq_f1_f2 : eq_on f1 f2 a)
(inj_f1 : inj_on f1 a) :
inj_on f2 a :=
take x1 x2 : X,
assume ax1 : x1 ∈ a,
assume ax2 : x2 ∈ a,
assume H : f2 x1 = f2 x2,
have H' : f1 x1 = f1 x2, from eq_f1_f2 ax1 ⬝ H ⬝ (eq_f1_f2 ax2)⁻¹,
show x1 = x2, from inj_f1 ax1 ax2 H'
theorem inj_on_compose {g : Y → Z} {f : X → Y} {a : set X} {b : set Y}
(fab : maps_to f a b) (Hg : inj_on g b) (Hf: inj_on f a) :
inj_on (g ∘ f) a :=
take x1 x2 : X,
assume x1a : x1 ∈ a,
assume x2a : x2 ∈ a,
have fx1b : f x1 ∈ b, from fab x1a,
have fx2b : f x2 ∈ b, from fab x2a,
assume H1 : g (f x1) = g (f x2),
have H2 : f x1 = f x2, from Hg fx1b fx2b H1,
show x1 = x2, from Hf x1a x2a H2
theorem inj_on_of_inj_on_of_subset {f : X → Y} {a b : set X} (H1 : inj_on f b) (H2 : a ⊆ b) :
inj_on f a :=
take x1 x2 : X, assume (x1a : x1 ∈ a) (x2a : x2 ∈ a),
assume H : f x1 = f x2,
show x1 = x2, from H1 (H2 x1a) (H2 x2a) H
lemma injective_iff_inj_on_univ {f : X → Y} : injective f ↔ inj_on f univ :=
iff.intro
(assume H, take x₁ x₂, assume ax₁ ax₂, H x₁ x₂)
(assume H : inj_on f univ,
take x₁ x₂ Heq,
show x₁ = x₂, from H trivial trivial Heq)
/- surjectivity -/
definition surj_on [reducible] (f : X → Y) (a : set X) (b : set Y) : Prop := b ⊆ f ' a
theorem surj_on_of_eq_on {f1 f2 : X → Y} {a : set X} {b : set Y} (eq_f1_f2 : eq_on f1 f2 a)
(surj_f1 : surj_on f1 a b) :
surj_on f2 a b :=
take y, assume H : y ∈ b,
obtain x (H1 : x ∈ a ∧ f1 x = y), from surj_f1 H,
have H2 : x ∈ a, from and.left H1,
have H3 : f2 x = y, from (eq_f1_f2 H2)⁻¹ ⬝ and.right H1,
exists.intro x (and.intro H2 H3)
theorem surj_on_compose {g : Y → Z} {f : X → Y} {a : set X} {b : set Y} {c : set Z}
(Hg : surj_on g b c) (Hf: surj_on f a b) :
surj_on (g ∘ f) a c :=
take z,
assume zc : z ∈ c,
obtain y (H1 : y ∈ b ∧ g y = z), from Hg zc,
obtain x (H2 : x ∈ a ∧ f x = y), from Hf (and.left H1),
show ∃x, x ∈ a ∧ g (f x) = z, from
exists.intro x
(and.intro
(and.left H2)
(calc
g (f x) = g y : {and.right H2}
... = z : and.right H1))
lemma surjective_iff_surj_on_univ {f : X → Y} : surjective f ↔ surj_on f univ univ :=
iff.intro
(assume H, take y, assume Hy,
obtain x Hx, from H y,
mem_image trivial Hx)
(assume H, take y,
obtain x H1x H2x, from H y trivial,
exists.intro x H2x)
lemma image_eq_of_maps_to_of_surj_on {f : X → Y} {a : set X} {b : set Y}
(H1 : maps_to f a b) (H2 : surj_on f a b) :
f ' a = b :=
eq_of_subset_of_subset (image_subset_of_maps_to H1) H2
/- bijectivity -/
definition bij_on [reducible] (f : X → Y) (a : set X) (b : set Y) : Prop :=
maps_to f a b ∧ inj_on f a ∧ surj_on f a b
lemma maps_to_of_bij_on {f : X → Y} {a : set X} {b : set Y} (H : bij_on f a b) :
maps_to f a b :=
and.left H
lemma inj_on_of_bij_on {f : X → Y} {a : set X} {b : set Y} (H : bij_on f a b) :
inj_on f a :=
and.left (and.right H)
lemma surj_on_of_bij_on {f : X → Y} {a : set X} {b : set Y} (H : bij_on f a b) :
surj_on f a b :=
and.right (and.right H)
lemma bij_on.mk {f : X → Y} {a : set X} {b : set Y}
(H₁ : maps_to f a b) (H₂ : inj_on f a) (H₃ : surj_on f a b) :
bij_on f a b :=
and.intro H₁ (and.intro H₂ H₃)
theorem bij_on_of_eq_on {f1 f2 : X → Y} {a : set X} {b : set Y} (eqf : eq_on f1 f2 a)
(H : bij_on f1 a b) : bij_on f2 a b :=
match H with and.intro Hmap (and.intro Hinj Hsurj) :=
and.intro
(maps_to_of_eq_on eqf Hmap)
(and.intro
(inj_on_of_eq_on eqf Hinj)
(surj_on_of_eq_on eqf Hsurj))
end
lemma image_eq_of_bij_on {f : X → Y} {a : set X} {b : set Y} (bfab : bij_on f a b) :
f ' a = b :=
image_eq_of_maps_to_of_surj_on (and.left bfab) (and.right (and.right bfab))
theorem bij_on_compose {g : Y → Z} {f : X → Y} {a : set X} {b : set Y} {c : set Z}
(Hg : bij_on g b c) (Hf: bij_on f a b) :
bij_on (g ∘ f) a c :=
match Hg with and.intro Hgmap (and.intro Hginj Hgsurj) :=
match Hf with and.intro Hfmap (and.intro Hfinj Hfsurj) :=
and.intro
(maps_to_compose Hgmap Hfmap)
(and.intro
(inj_on_compose Hfmap Hginj Hfinj)
(surj_on_compose Hgsurj Hfsurj))
end
end
lemma bijective_iff_bij_on_univ {f : X → Y} : bijective f ↔ bij_on f univ univ :=
iff.intro
(assume H,
obtain Hinj Hsurj, from H,
and.intro (maps_to_univ_univ f)
(and.intro
(iff.mp !injective_iff_inj_on_univ Hinj)
(iff.mp !surjective_iff_surj_on_univ Hsurj)))
(assume H,
obtain Hmaps Hinj Hsurj, from H,
(and.intro
(iff.mpr !injective_iff_inj_on_univ Hinj)
(iff.mpr !surjective_iff_surj_on_univ Hsurj)))
/- left inverse -/
-- g is a left inverse to f on a
definition left_inv_on [reducible] (g : Y → X) (f : X → Y) (a : set X) : Prop :=
∀₀ x ∈ a, g (f x) = x
theorem left_inv_on_of_eq_on_left {g1 g2 : Y → X} {f : X → Y} {a : set X} {b : set Y}
(fab : maps_to f a b) (eqg : eq_on g1 g2 b) (H : left_inv_on g1 f a) : left_inv_on g2 f a :=
take x,
assume xa : x ∈ a,
calc
g2 (f x) = g1 (f x) : (eqg (fab xa))⁻¹
... = x : H xa
theorem left_inv_on_of_eq_on_right {g : Y → X} {f1 f2 : X → Y} {a : set X}
(eqf : eq_on f1 f2 a) (H : left_inv_on g f1 a) : left_inv_on g f2 a :=
take x,
assume xa : x ∈ a,
calc
g (f2 x) = g (f1 x) : {(eqf xa)⁻¹}
... = x : H xa
theorem inj_on_of_left_inv_on {g : Y → X} {f : X → Y} {a : set X} (H : left_inv_on g f a) :
inj_on f a :=
take x1 x2,
assume x1a : x1 ∈ a,
assume x2a : x2 ∈ a,
assume H1 : f x1 = f x2,
calc
x1 = g (f x1) : H x1a
... = g (f x2) : H1
... = x2 : H x2a
theorem left_inv_on_compose {f' : Y → X} {g' : Z → Y} {g : Y → Z} {f : X → Y}
{a : set X} {b : set Y} (fab : maps_to f a b)
(Hf : left_inv_on f' f a) (Hg : left_inv_on g' g b) : left_inv_on (f' ∘ g') (g ∘ f) a :=
take x : X,
assume xa : x ∈ a,
have fxb : f x ∈ b, from fab xa,
calc
f' (g' (g (f x))) = f' (f x) : Hg fxb
... = x : Hf xa
/- right inverse -/
-- g is a right inverse to f on a
definition right_inv_on [reducible] (g : Y → X) (f : X → Y) (b : set Y) : Prop :=
left_inv_on f g b
theorem right_inv_on_of_eq_on_left {g1 g2 : Y → X} {f : X → Y} {a : set X} {b : set Y}
(eqg : eq_on g1 g2 b) (H : right_inv_on g1 f b) : right_inv_on g2 f b :=
left_inv_on_of_eq_on_right eqg H
theorem right_inv_on_of_eq_on_right {g : Y → X} {f1 f2 : X → Y} {a : set X} {b : set Y}
(gba : maps_to g b a) (eqf : eq_on f1 f2 a) (H : right_inv_on g f1 b) : right_inv_on g f2 b :=
left_inv_on_of_eq_on_left gba eqf H
theorem surj_on_of_right_inv_on {g : Y → X} {f : X → Y} {a : set X} {b : set Y}
(gba : maps_to g b a) (H : right_inv_on g f b) :
surj_on f a b :=
take y,
assume yb : y ∈ b,
have gya : g y ∈ a, from gba yb,
have H1 : f (g y) = y, from H yb,
exists.intro (g y) (and.intro gya H1)
theorem right_inv_on_compose {f' : Y → X} {g' : Z → Y} {g : Y → Z} {f : X → Y}
{c : set Z} {b : set Y} (g'cb : maps_to g' c b)
(Hf : right_inv_on f' f b) (Hg : right_inv_on g' g c) : right_inv_on (f' ∘ g') (g ∘ f) c :=
left_inv_on_compose g'cb Hg Hf
theorem right_inv_on_of_inj_on_of_left_inv_on {f : X → Y} {g : Y → X} {a : set X} {b : set Y}
(fab : maps_to f a b) (gba : maps_to g b a) (injf : inj_on f a) (lfg : left_inv_on f g b) :
right_inv_on f g a :=
take x, assume xa : x ∈ a,
have H : f (g (f x)) = f x, from lfg (fab xa),
injf (gba (fab xa)) xa H
theorem eq_on_of_left_inv_of_right_inv {g1 g2 : Y → X} {f : X → Y} {a : set X} {b : set Y}
(g2ba : maps_to g2 b a) (Hg1 : left_inv_on g1 f a) (Hg2 : right_inv_on g2 f b) : eq_on g1 g2 b :=
take y,
assume yb : y ∈ b,
calc
g1 y = g1 (f (g2 y)) : {(Hg2 yb)⁻¹}
... = g2 y : Hg1 (g2ba yb)
theorem left_inv_on_of_surj_on_right_inv_on {f : X → Y} {g : Y → X} {a : set X} {b : set Y}
(surjf : surj_on f a b) (rfg : right_inv_on f g a) :
left_inv_on f g b :=
take y, assume yb : y ∈ b,
obtain x (xa : x ∈ a) (Hx : f x = y), from surjf yb,
calc
f (g y) = f (g (f x)) : Hx
... = f x : rfg xa
... = y : Hx
/- inverses -/
-- g is an inverse to f viewed as a map from a to b
definition inv_on [reducible] (g : Y → X) (f : X → Y) (a : set X) (b : set Y) : Prop :=
left_inv_on g f a ∧ right_inv_on g f b
theorem bij_on_of_inv_on {g : Y → X} {f : X → Y} {a : set X} {b : set Y} (fab : maps_to f a b)
(gba : maps_to g b a) (H : inv_on g f a b) : bij_on f a b :=
and.intro fab
(and.intro
(inj_on_of_left_inv_on (and.left H))
(surj_on_of_right_inv_on gba (and.right H)))
end set