lean2/hott/algebra/category/adjoint.hlean

537 lines
22 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Properties of functors such as adjoint functors, equivalences, faithful or full functors
TODO: Split this file in different files
-/
import .constructions.functor function arity
open category functor nat_trans eq is_trunc iso equiv prod trunc function pi is_equiv
namespace category
variables {C D : Precategory} {F : C ⇒ D} {G : D ⇒ C}
-- TODO: define a structure "adjoint" and then define
-- structure is_left_adjoint (F : C ⇒ D) :=
-- (G : D ⇒ C) -- G
-- (is_adjoint : adjoint F G)
structure is_left_adjoint [class] (F : C ⇒ D) :=
(G : D ⇒ C)
(η : 1 ⟹ G ∘f F)
(ε : F ∘f G ⟹ 1)
(H : Π(c : C), ε (F c) ∘ F (η c) = ID (F c))
(K : Π(d : D), G (ε d) ∘ η (G d) = ID (G d))
abbreviation right_adjoint [unfold 4] := @is_left_adjoint.G
abbreviation unit [unfold 4] := @is_left_adjoint.η
abbreviation counit [unfold 4] := @is_left_adjoint.ε
abbreviation counit_unit_eq [unfold 4] := @is_left_adjoint.H
abbreviation unit_counit_eq [unfold 4] := @is_left_adjoint.K
structure is_equivalence [class] (F : C ⇒ D) extends is_left_adjoint F :=
mk' ::
(is_iso_unit : is_iso η)
(is_iso_counit : is_iso ε)
abbreviation inverse := @is_equivalence.G
postfix ⁻¹ := inverse
--a second notation for the inverse, which is not overloaded (there is no unicode superscript F)
postfix [parsing_only] `⁻¹F`:std.prec.max_plus := inverse
definition faithful [class] (F : C ⇒ D) := Π⦃c c' : C⦄ ⦃f f' : c ⟶ c'⦄, F f = F f' → f = f'
definition full [class] (F : C ⇒ D) := Π⦃c c' : C⦄, is_surjective (@(to_fun_hom F) c c')
definition fully_faithful [class] (F : C ⇒ D) := Π(c c' : C), is_equiv (@(to_fun_hom F) c c')
definition split_essentially_surjective [class] (F : C ⇒ D) := Π(d : D), Σ(c : C), F c ≅ d
definition essentially_surjective [class] (F : C ⇒ D) := Π(d : D), ∃(c : C), F c ≅ d
definition is_weak_equivalence [class] (F : C ⇒ D) := fully_faithful F × essentially_surjective F
definition is_isomorphism [class] (F : C ⇒ D) := fully_faithful F × is_equiv (to_fun_ob F)
structure equivalence (C D : Precategory) :=
(to_functor : C ⇒ D)
(struct : is_equivalence to_functor)
structure isomorphism (C D : Precategory) :=
(to_functor : C ⇒ D)
(struct : is_isomorphism to_functor)
-- infix `⊣`:55 := adjoint
infix ` ≃c `:25 := equivalence
infix ` ≅c `:25 := isomorphism
definition is_equiv_of_fully_faithful [instance] [reducible] (F : C ⇒ D) [H : fully_faithful F]
(c c' : C) : is_equiv (@(to_fun_hom F) c c') :=
!H
definition hom_inv [reducible] (F : C ⇒ D) [H : fully_faithful F] (c c' : C) (f : F c ⟶ F c')
: c ⟶ c' :=
(to_fun_hom F)⁻¹ᶠ f
definition hom_equiv_F_hom_F [constructor] (F : C ⇒ D)
[H : fully_faithful F] (c c' : C) : (c ⟶ c') ≃ (F c ⟶ F c') :=
equiv.mk _ !H
definition iso_of_F_iso_F (F : C ⇒ D)
[H : fully_faithful F] (c c' : C) (g : F c ≅ F c') : c ≅ c' :=
begin
induction g with g G, induction G with h p q, fapply iso.MK,
{ rexact (to_fun_hom F)⁻¹ᶠ g},
{ rexact (to_fun_hom F)⁻¹ᶠ h},
{ exact abstract begin
apply eq_of_fn_eq_fn' (to_fun_hom F),
rewrite [respect_comp, respect_id,
right_inv (to_fun_hom F), right_inv (to_fun_hom F), p],
end end},
{ exact abstract begin
apply eq_of_fn_eq_fn' (to_fun_hom F),
rewrite [respect_comp, respect_id,
right_inv (to_fun_hom F), right_inv (@(to_fun_hom F) c' c), q],
end end}
end
definition iso_equiv_F_iso_F [constructor] (F : C ⇒ D)
[H : fully_faithful F] (c c' : C) : (c ≅ c') ≃ (F c ≅ F c') :=
begin
fapply equiv.MK,
{ exact to_fun_iso F},
{ apply iso_of_F_iso_F},
{ exact abstract begin
intro f, induction f with f F', induction F' with g p q, apply iso_eq,
esimp [iso_of_F_iso_F], apply right_inv end end},
{ exact abstract begin
intro f, induction f with f F', induction F' with g p q, apply iso_eq,
esimp [iso_of_F_iso_F], apply right_inv end end},
end
definition is_iso_unit [instance] (F : C ⇒ D) [H : is_equivalence F] : is_iso (unit F) :=
!is_equivalence.is_iso_unit
definition is_iso_counit [instance] (F : C ⇒ D) [H : is_equivalence F] : is_iso (counit F) :=
!is_equivalence.is_iso_counit
definition iso_unit (F : C ⇒ D) [H : is_equivalence F] : F ⁻¹F ∘f F ≅ 1 :=
(@(iso.mk _) !is_iso_unit)⁻¹ⁱ
definition iso_counit (F : C ⇒ D) [H : is_equivalence F] : F ∘f F ⁻¹F ≅ 1 :=
@(iso.mk _) !is_iso_counit
definition full_of_fully_faithful (H : fully_faithful F) : full F :=
λc c' g, tr (fiber.mk ((@(to_fun_hom F) c c')⁻¹ᶠ g) !right_inv)
definition faithful_of_fully_faithful (H : fully_faithful F) : faithful F :=
λc c' f f' p, is_injective_of_is_embedding p
definition fully_faithful_of_full_of_faithful (H : faithful F) (K : full F) : fully_faithful F :=
begin
intro c c',
apply is_equiv_of_is_surjective_of_is_embedding,
{ apply is_embedding_of_is_injective,
intros f f' p, exact H p},
{ apply K}
end
definition split_essentially_surjective_of_is_equivalence (F : C ⇒ D) [H : is_equivalence F]
: split_essentially_surjective F :=
begin
intro d, fconstructor,
{ exact F⁻¹ d},
{ exact componentwise_iso (@(iso.mk (counit F)) !is_iso_counit) d}
end
definition reflect_is_iso [constructor] (F : C ⇒ D) [H : fully_faithful F] {c c' : C} (f : c ⟶ c')
[H : is_iso (F f)] : is_iso f :=
begin
fconstructor,
{ exact (to_fun_hom F)⁻¹ᶠ (F f)⁻¹},
{ apply eq_of_fn_eq_fn' (to_fun_hom F),
rewrite [respect_comp,right_inv (to_fun_hom F),respect_id,left_inverse]},
{ apply eq_of_fn_eq_fn' (to_fun_hom F),
rewrite [respect_comp,right_inv (to_fun_hom F),respect_id,right_inverse]},
end
definition reflect_iso [constructor] (F : C ⇒ D) [H : fully_faithful F] {c c' : C}
(f : F c ≅ F c') : c ≅ c' :=
begin
fconstructor,
{ exact (to_fun_hom F)⁻¹ᶠ f},
{ assert H : is_iso (F ((to_fun_hom F)⁻¹ᶠ f)),
{ have H' : is_iso (to_hom f), from _, exact (right_inv (to_fun_hom F) (to_hom f))⁻¹ ▸ H'},
exact reflect_is_iso F _},
end
theorem reflect_inverse (F : C ⇒ D) [H : fully_faithful F] {c c' : C} (f : c ⟶ c')
[H : is_iso f] : (to_fun_hom F)⁻¹ᶠ (F f)⁻¹ = f⁻¹ :=
inverse_eq_inverse (idp : to_hom (@(iso.mk f) (reflect_is_iso F f)) = f)
end category
namespace category
section
parameters {C D : Precategory} {F : C ⇒ D} {G : D ⇒ C} (η : G ∘f F ≅ 1) (ε : F ∘f G ≅ 1)
-- variables (η : Πc, G (F c) ≅ c) (ε : Πd, F (G d) ≅ d)
-- (pη : Π(c c' : C) (f : hom c c'), f ∘ to_hom (η c) = to_hom (η c') ∘ G (F f))
-- (pε : Π⦃d d' : D⦄ (f : hom d d'), f ∘ to_hom (ε d) = to_hom (ε d') ∘ F (G f))
private definition ηn : 1 ⟹ G ∘f F := to_inv η
private definition εn : F ∘f G ⟹ 1 := to_hom ε
private definition ηi (c : C) : G (F c) ≅ c := componentwise_iso η c
private definition εi (d : D) : F (G d) ≅ d := componentwise_iso ε d
private definition ηi' (c : C) : G (F c) ≅ c :=
to_fun_iso G (to_fun_iso F (ηi c)⁻¹ⁱ) ⬝i to_fun_iso G (εi (F c)) ⬝i ηi c
local attribute ηn εn ηi εi ηi' [reducible]
private theorem adj_η_natural {c c' : C} (f : hom c c')
: G (F f) ∘ to_inv (ηi' c) = to_inv (ηi' c') ∘ f :=
let ηi'_nat : G ∘f F ⟹ 1 :=
calc
G ∘f F ⟹ (G ∘f F) ∘f 1 : id_right_natural_rev (G ∘f F)
... ⟹ (G ∘f F) ∘f (G ∘f F) : (G ∘f F) ∘fn ηn
... ⟹ ((G ∘f F) ∘f G) ∘f F : assoc_natural (G ∘f F) G F
... ⟹ (G ∘f (F ∘f G)) ∘f F : assoc_natural_rev G F G ∘nf F
... ⟹ (G ∘f 1) ∘f F : (G ∘fn εn) ∘nf F
... ⟹ G ∘f F : id_right_natural G ∘nf F
... ⟹ 1 : to_hom η
in
begin
refine is_natural_inverse' (G ∘f F) functor.id ηi' ηi'_nat _ f,
intro c, esimp, rewrite [+id_left,id_right]
end
private theorem adjointify_adjH (c : C) :
to_hom (εi (F c)) ∘ F (to_hom (ηi' c))⁻¹ = id :=
begin
rewrite [respect_inv], apply comp_inverse_eq_of_eq_comp,
rewrite [id_left,↑ηi',+respect_comp,+respect_inv',assoc], apply eq_comp_inverse_of_comp_eq,
rewrite [↑εi,-naturality_iso_id ε (F c)],
symmetry, exact naturality εn (F (to_hom (ηi c)))
end
private theorem adjointify_adjK (d : D) :
G (to_hom (εi d)) ∘ to_hom (ηi' (G d))⁻¹ⁱ = id :=
begin
apply comp_inverse_eq_of_eq_comp,
rewrite [id_left,↑ηi',+respect_inv',assoc], apply eq_comp_inverse_of_comp_eq,
rewrite [↑ηi,-naturality_iso_id η (G d),↑εi,naturality_iso_id ε d],
exact naturality (to_hom η) (G (to_hom (εi d))),
end
parameter (G)
include η ε
definition is_equivalence.mk : is_equivalence F :=
begin
fapply is_equivalence.mk',
{ exact G},
{ fapply nat_trans.mk,
{ intro c, exact to_inv (ηi' c)},
{ intro c c' f, exact adj_η_natural f}},
{ exact εn},
{ exact adjointify_adjH},
{ exact adjointify_adjK},
{ exact @(is_iso_nat_trans _) (λc, !is_iso_inverse)},
{ unfold εn, apply iso.struct, },
end
definition equivalence.MK : C ≃c D :=
equivalence.mk F is_equivalence.mk
end
variables {C D E : Precategory} {F : C ⇒ D}
--TODO: add variants
definition unit_eq_counit_inv (F : C ⇒ D) [H : is_equivalence F] (c : C) :
to_fun_hom F (natural_map (unit F) c) =
@(is_iso.inverse (counit F (F c))) (@(componentwise_is_iso (counit F)) !is_iso_counit (F c)) :=
begin
apply eq_inverse_of_comp_eq_id, apply counit_unit_eq
end
definition fully_faithful_of_is_equivalence (F : C ⇒ D) [H : is_equivalence F]
: fully_faithful F :=
begin
intro c c',
fapply adjointify,
{ intro g, exact natural_map (@(iso.inverse (unit F)) !is_iso_unit) c' ∘ F⁻¹ g ∘ unit F c},
{ intro g, rewrite [+respect_comp,▸*],
xrewrite [natural_map_inverse (unit F) c', respect_inv'],
apply inverse_comp_eq_of_eq_comp,
rewrite [+unit_eq_counit_inv],
esimp, exact naturality (counit F)⁻¹ _},
{ intro f, xrewrite [▸*,natural_map_inverse (unit F) c'], apply inverse_comp_eq_of_eq_comp,
apply naturality (unit F)},
end
definition is_isomorphism.mk {F : C ⇒ D} (G : D ⇒ C) (p : G ∘f F = 1) (q : F ∘f G = 1)
: is_isomorphism F :=
begin
constructor,
{ apply fully_faithful_of_is_equivalence, fapply is_equivalence.mk,
{ exact G},
{ apply iso_of_eq p},
{ apply iso_of_eq q}},
{ fapply adjointify,
{ exact G},
{ exact ap010 to_fun_ob q},
{ exact ap010 to_fun_ob p}}
end
definition is_equiv_of_is_isomorphism (F : C ⇒ D) [H : is_isomorphism F]
: is_equiv (to_fun_ob F) :=
pr2 H
definition is_fully_faithful_of_is_isomorphism (F : C ⇒ D) [H : is_isomorphism F]
: fully_faithful F :=
pr1 H
local attribute is_fully_faithful_of_is_isomorphism is_equiv_of_is_isomorphism [instance]
definition strict_inverse [constructor] (F : C ⇒ D) [H : is_isomorphism F] : D ⇒ C :=
begin
fapply functor.mk,
{ intro d, exact (to_fun_ob F)⁻¹ᶠ d},
{ intro d d' g, exact (to_fun_hom F)⁻¹ᶠ (inv_of_eq !right_inv ∘ g ∘ hom_of_eq !right_inv)},
{ intro d, apply inv_eq_of_eq, rewrite [respect_id,id_left], apply left_inverse},
{ intro d₁ d₂ d₃ g₂ g₁, apply inv_eq_of_eq, rewrite [respect_comp F,+right_inv (to_fun_hom F)],
rewrite [+assoc], esimp, /-apply ap (λx, _ ∘ x), FAILS-/ refine ap (λx, (x ∘ _) ∘ _) _,
refine !id_right⁻¹ ⬝ _, rewrite [▸*,-+assoc], refine ap (λx, _ ∘ _ ∘ x) _,
exact !right_inverse⁻¹},
end
postfix /-[parsing-only]-/ `⁻¹ˢ`:std.prec.max_plus := strict_inverse
definition strict_right_inverse (F : C ⇒ D) [H : is_isomorphism F] : F ∘f F⁻¹ˢ = 1 :=
begin
fapply functor_eq,
{ intro d, esimp, apply right_inv},
{ intro d d' g,
rewrite [▸*, right_inv (to_fun_hom F), +assoc],
rewrite [↑[hom_of_eq,inv_of_eq,iso.to_inv], right_inverse],
rewrite [id_left], apply comp_inverse_cancel_right},
end
definition strict_left_inverse (F : C ⇒ D) [H : is_isomorphism F] : F⁻¹ˢ ∘f F = 1 :=
begin
fapply functor_eq,
{ intro d, esimp, apply left_inv},
{ intro d d' g, esimp, apply comp_eq_of_eq_inverse_comp, apply comp_inverse_eq_of_eq_comp,
apply inv_eq_of_eq, rewrite [+respect_comp,-assoc], apply ap011 (λx y, x ∘ F g ∘ y),
{ rewrite [adj], rewrite [▸*,respect_inv_of_eq F]},
{ rewrite [adj,▸*,respect_hom_of_eq F]}},
end
definition is_equivalence_of_is_isomorphism [instance] (F : C ⇒ D) [H : is_isomorphism F]
: is_equivalence F :=
begin
fapply is_equivalence.mk,
{ apply F⁻¹ˢ},
{ apply iso_of_eq !strict_left_inverse},
{ apply iso_of_eq !strict_right_inverse},
end
theorem is_hprop_is_left_adjoint [instance] {C : Category} {D : Precategory} (F : C ⇒ D)
: is_hprop (is_left_adjoint F) :=
begin
apply is_hprop.mk,
intro G G', cases G with G η ε H K, cases G' with G' η' ε' H' K',
assert lem₁ : Π(p : G = G'), p ▸ η = η' → p ▸ ε = ε'
→ is_left_adjoint.mk G η ε H K = is_left_adjoint.mk G' η' ε' H' K',
{ intros p q r, induction p, induction q, induction r, esimp,
apply apd011 (is_left_adjoint.mk G η ε) !is_hprop.elim !is_hprop.elim},
assert lem₂ : Π (d : carrier D),
(to_fun_hom G (natural_map ε' d) ∘
natural_map η (to_fun_ob G' d)) ∘
to_fun_hom G' (natural_map ε d) ∘
natural_map η' (to_fun_ob G d) = id,
{ intro d, esimp,
rewrite [assoc],
rewrite [-assoc (G (ε' d))],
esimp, rewrite [nf_fn_eq_fn_nf_pt' G' ε η d],
esimp, rewrite [assoc],
esimp, rewrite [-assoc],
rewrite [↑functor.compose, -respect_comp G],
rewrite [nf_fn_eq_fn_nf_pt ε ε' d,nf_fn_eq_fn_nf_pt η' η (G d),▸*],
rewrite [respect_comp G],
rewrite [assoc,▸*,-assoc (G (ε d))],
rewrite [↑functor.compose, -respect_comp G],
rewrite [H' (G d)],
rewrite [respect_id,▸*,id_right],
apply K},
assert lem₃ : Π (d : carrier D),
(to_fun_hom G' (natural_map ε d) ∘
natural_map η' (to_fun_ob G d)) ∘
to_fun_hom G (natural_map ε' d) ∘
natural_map η (to_fun_ob G' d) = id,
{ intro d, esimp,
rewrite [assoc, -assoc (G' (ε d))],
esimp, rewrite [nf_fn_eq_fn_nf_pt' G ε' η' d],
esimp, rewrite [assoc], esimp, rewrite [-assoc],
rewrite [↑functor.compose, -respect_comp G'],
rewrite [nf_fn_eq_fn_nf_pt ε' ε d,nf_fn_eq_fn_nf_pt η η' (G' d)],
esimp,
rewrite [respect_comp G'],
rewrite [assoc,▸*,-assoc (G' (ε' d))],
rewrite [↑functor.compose, -respect_comp G'],
rewrite [H (G' d)],
rewrite [respect_id,▸*,id_right],
apply K'},
fapply lem₁,
{ fapply functor.eq_of_pointwise_iso,
{ fapply change_natural_map,
{ exact (G' ∘fn1 ε) ∘n !assoc_natural_rev ∘n (η' ∘1nf G)},
{ intro d, exact (G' (ε d) ∘ η' (G d))},
{ intro d, exact ap (λx, _ ∘ x) !id_left}},
{ intro d, fconstructor,
{ exact (G (ε' d) ∘ η (G' d))},
{ exact lem₂ d },
{ exact lem₃ d }}},
{ clear lem₁, refine transport_hom_of_eq_right _ η ⬝ _,
krewrite hom_of_eq_compose_right,
rewrite functor.hom_of_eq_eq_of_pointwise_iso,
apply nat_trans_eq, intro c, esimp,
refine !assoc⁻¹ ⬝ ap (λx, _ ∘ x) (nf_fn_eq_fn_nf_pt η η' c) ⬝ !assoc ⬝ _,
esimp, rewrite [-respect_comp G',H c,respect_id G',▸*,id_left]},
{ clear lem₁, refine transport_hom_of_eq_left _ ε ⬝ _,
krewrite inv_of_eq_compose_left,
rewrite functor.inv_of_eq_eq_of_pointwise_iso,
apply nat_trans_eq, intro d, esimp,
krewrite [respect_comp],
rewrite [assoc,nf_fn_eq_fn_nf_pt ε' ε d,-assoc,▸*,H (G' d),id_right]}
end
theorem is_hprop_is_equivalence [instance] {C : Category} {D : Precategory} (F : C ⇒ D) : is_hprop (is_equivalence F) :=
begin
assert f : is_equivalence F ≃ Σ(H : is_left_adjoint F), is_iso (unit F) × is_iso (counit F),
{ fapply equiv.MK,
{ intro H, induction H, fconstructor: constructor, repeat (esimp;assumption) },
{ intro H, induction H with H1 H2, induction H1, induction H2, constructor,
repeat (esimp at *;assumption)},
{ intro H, induction H with H1 H2, induction H1, induction H2, reflexivity},
{ intro H, induction H, reflexivity}},
apply is_trunc_equiv_closed_rev, exact f,
end
theorem is_hprop_fully_faithful [instance] (F : C ⇒ D) : is_hprop (fully_faithful F) :=
by unfold fully_faithful; exact _
theorem is_hprop_full [instance] (F : C ⇒ D) : is_hprop (full F) :=
by unfold full; exact _
theorem is_hprop_faithful [instance] (F : C ⇒ D) : is_hprop (faithful F) :=
by unfold faithful; exact _
theorem is_hprop_essentially_surjective [instance] (F : C ⇒ D)
: is_hprop (essentially_surjective F) :=
by unfold essentially_surjective; exact _
theorem is_hprop_is_weak_equivalence [instance] (F : C ⇒ D) : is_hprop (is_weak_equivalence F) :=
by unfold is_weak_equivalence; exact _
theorem is_hprop_is_isomorphism [instance] (F : C ⇒ D) : is_hprop (is_isomorphism F) :=
by unfold is_isomorphism; exact _
definition fully_faithful_equiv (F : C ⇒ D) : fully_faithful F ≃ (faithful F × full F) :=
equiv_of_is_hprop (λH, (faithful_of_fully_faithful H, full_of_fully_faithful H))
(λH, fully_faithful_of_full_of_faithful (pr1 H) (pr2 H))
/- alternative proof using direct calculation with equivalences
definition fully_faithful_equiv (F : C ⇒ D) : fully_faithful F ≃ (faithful F × full F) :=
calc
fully_faithful F
≃ (Π(c c' : C), is_embedding (to_fun_hom F) × is_surjective (to_fun_hom F))
: pi_equiv_pi_id (λc, pi_equiv_pi_id
(λc', !is_equiv_equiv_is_embedding_times_is_surjective))
... ≃ (Π(c : C), (Π(c' : C), is_embedding (to_fun_hom F)) ×
(Π(c' : C), is_surjective (to_fun_hom F)))
: pi_equiv_pi_id (λc, !equiv_prod_corec)
... ≃ (Π(c c' : C), is_embedding (to_fun_hom F)) × full F
: equiv_prod_corec
... ≃ faithful F × full F
: prod_equiv_prod_right (pi_equiv_pi_id (λc, pi_equiv_pi_id
(λc', !is_embedding_equiv_is_injective)))
-/
/- closure properties -/
definition is_isomorphism_id [instance] (C : Precategory) : is_isomorphism (1 : C ⇒ C) :=
is_isomorphism.mk 1 !functor.id_right !functor.id_right
definition is_isomorphism_strict_inverse (F : C ⇒ D) [K : is_isomorphism F]
: is_isomorphism F⁻¹ˢ :=
is_isomorphism.mk F !strict_right_inverse !strict_left_inverse
definition is_isomorphism_compose (G : D ⇒ E) (F : C ⇒ D)
[H : is_isomorphism G] [K : is_isomorphism F] : is_isomorphism (G ∘f F) :=
is_isomorphism.mk
(F⁻¹ˢ ∘f G⁻¹ˢ)
abstract begin
rewrite [functor.assoc,-functor.assoc F⁻¹ˢ,strict_left_inverse,functor.id_right,
strict_left_inverse]
end end
abstract begin
rewrite [functor.assoc,-functor.assoc G,strict_right_inverse,functor.id_right,
strict_right_inverse]
end end
definition is_equivalence_id (C : Precategory) : is_equivalence (1 : C ⇒ C) := _
definition is_equivalence_strict_inverse (F : C ⇒ D) [K : is_equivalence F]
: is_equivalence F ⁻¹F :=
is_equivalence.mk F (iso_counit F) (iso_unit F)
/-
definition is_equivalence_compose (G : D ⇒ E) (F : C ⇒ D)
[H : is_equivalence G] [K : is_equivalence F] : is_equivalence (G ∘f F) :=
is_equivalence.mk
(F ⁻¹F ∘f G ⁻¹F)
abstract begin
rewrite [functor.assoc,-functor.assoc F ⁻¹F],
-- refine ((_ ∘fi _) ∘if _) ⬝i _,
end end
abstract begin
rewrite [functor.assoc,-functor.assoc G,strict_right_inverse,functor.id_right,
strict_right_inverse]
end end
definition is_equivalence_equiv (F : C ⇒ D)
: is_equivalence F ≃ (fully_faithful F × split_essentially_surjective F) :=
sorry
definition is_isomorphism_equiv1 (F : C ⇒ D) : is_equivalence F
≃ Σ(G : D ⇒ C) (η : 1 = G ∘f F) (ε : F ∘f G = 1),
sorry ▸ ap (λ(H : C ⇒ C), F ∘f H) η = ap (λ(H : D ⇒ D), H ∘f F) ε⁻¹ :=
sorry
definition is_isomorphism_equiv2 (F : C ⇒ D) : is_equivalence F
≃ ∃(G : D ⇒ C), 1 = G ∘f F × F ∘f G = 1 :=
sorry
definition isomorphism_of_eq {C D : Precategory} (p : C = D) : C ≅c D :=
sorry
definition is_equiv_isomorphism_of_eq (C D : Precategory) : is_equiv (@isomorphism_of_eq C D) :=
sorry
definition equivalence_of_eq {C D : Precategory} (p : C = D) : C ≃c D :=
sorry
definition is_isomorphism_of_is_equivalence {C D : Category} {F : C ⇒ D} (H : is_equivalence F)
: is_isomorphism F :=
sorry
definition is_equivalence_equiv_is_weak_equivalence {C D : Category} (F : C ⇒ D)
: is_equivalence F ≃ is_weak_equivalence F :=
sorry
definition is_equiv_equivalence_of_eq (C D : Category) : is_equiv (@equivalence_of_eq C D) :=
sorry
-/
end category