lean2/hott/homotopy/sphere.hlean

194 lines
6.3 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Declaration of the n-spheres
-/
import .susp types.trunc
open eq nat susp bool is_trunc unit pointed
/-
We can define spheres with the following possible indices:
- trunc_index (defining S^-2 = S^-1 = empty)
- nat (forgetting that S^-1 = empty)
- nat, but counting wrong (S^0 = empty, S^1 = bool, ...)
- some new type "integers >= -1"
We choose the last option here.
-/
/- Sphere levels -/
inductive sphere_index : Type₀ :=
| minus_one : sphere_index
| succ : sphere_index → sphere_index
namespace trunc_index
definition sub_one [reducible] (n : sphere_index) : trunc_index :=
sphere_index.rec_on n -2 (λ n k, k.+1)
postfix `.-1`:(max+1) := sub_one
end trunc_index
namespace sphere_index
/-
notation for sphere_index is -1, 0, 1, ...
from 0 and up this comes from a coercion from num to sphere_index (via nat)
-/
postfix `.+1`:(max+1) := sphere_index.succ
postfix `.+2`:(max+1) := λ(n : sphere_index), (n .+1 .+1)
notation `-1` := minus_one
export [coercions] nat
notation `ℕ₋₁` := sphere_index
definition add (n m : sphere_index) : sphere_index :=
sphere_index.rec_on m n (λ k l, l .+1)
definition leq (n m : sphere_index) : Type₀ :=
sphere_index.rec_on n (λm, unit) (λ n p m, sphere_index.rec_on m (λ p, empty) (λ m q p, p m) p) m
infix `+1+`:65 := sphere_index.add
notation x <= y := sphere_index.leq x y
notation x ≤ y := sphere_index.leq x y
definition succ_le_succ {n m : sphere_index} (H : n ≤ m) : n.+1 ≤ m.+1 := H
definition le_of_succ_le_succ {n m : sphere_index} (H : n.+1 ≤ m.+1) : n ≤ m := H
definition minus_two_le (n : sphere_index) : -1 ≤ n := star
definition empty_of_succ_le_minus_two {n : sphere_index} (H : n .+1 ≤ -1) : empty := H
definition of_nat [coercion] [reducible] (n : nat) : sphere_index :=
(nat.rec_on n -1 (λ n k, k.+1)).+1
definition trunc_index_of_sphere_index [coercion] [reducible] (n : sphere_index) : trunc_index :=
(sphere_index.rec_on n -2 (λ n k, k.+1)).+1
definition sub_one [reducible] (n : ) : sphere_index :=
nat.rec_on n -1 (λ n k, k.+1)
postfix `.-1`:(max+1) := sub_one
open trunc_index
definition sub_two_eq_sub_one_sub_one (n : ) : n.-2 = n.-1.-1 :=
nat.rec_on n idp (λn p, ap trunc_index.succ p)
end sphere_index
open sphere_index equiv
definition sphere : sphere_index → Type₀
| -1 := empty
| n.+1 := susp (sphere n)
namespace sphere
definition base {n : } : sphere n := north
definition pointed_sphere [instance] [constructor] (n : ) : pointed (sphere n) :=
pointed.mk base
definition Sphere [constructor] (n : ) : Pointed := pointed.mk' (sphere n)
namespace ops
abbreviation S := sphere
notation `S.`:max := Sphere
end ops
open sphere.ops
definition equator (n : ) : map₊ (S. n) (Ω (S. (succ n))) :=
pmap.mk (λa, merid a ⬝ (merid base)⁻¹) !con.right_inv
definition surf {n : } : Ω[n] S. n :=
nat.rec_on n (by esimp [Iterated_loop_space]; exact base)
(by intro n s;exact apn n (equator n) s)
definition bool_of_sphere : S 0 → bool :=
susp.rec ff tt (λx, empty.elim x)
definition sphere_of_bool : bool → S 0
| ff := north
| tt := south
definition sphere_equiv_bool : S 0 ≃ bool :=
equiv.MK bool_of_sphere
sphere_of_bool
(λb, match b with | tt := idp | ff := idp end)
(λx, susp.rec_on x idp idp (empty.rec _))
definition sphere_eq_bool : S 0 = bool :=
ua sphere_equiv_bool
definition sphere_eq_bool_pointed : S. 0 = Bool :=
Pointed_eq sphere_equiv_bool idp
definition pmap_sphere (A : Pointed) (n : ) : map₊ (S. n) A ≃ Ω[n] A :=
begin
revert A, induction n with n IH,
{ intro A, rewrite [sphere_eq_bool_pointed], apply pmap_bool_equiv},
{ intro A, transitivity _, apply susp_adjoint_loop (S. n) A, apply IH}
end -- can we prove this in such a way that the function from left to right is apn _ surf?
protected definition elim {n : } {P : Pointed} (p : Ω[n] P) : map₊ (S. n) P :=
to_inv !pmap_sphere p
-- definition elim_surf {n : } {P : Pointed} (p : Ω[n] P) : apn n (sphere.elim p) surf = p :=
-- begin
-- induction n with n IH,
-- { esimp [apn,surf,sphere.elim,pmap_sphere], apply sorry},
-- { apply sorry}
-- end
end sphere
open sphere sphere.ops
structure weakly_constant [class] {A B : Type} (f : A → B) := --move
(is_weakly_constant : Πa a', f a = f a')
abbreviation wconst := @weakly_constant.is_weakly_constant
namespace is_trunc
open trunc_index
variables {n : } {A : Type}
definition is_trunc_of_pmap_sphere_constant
(H : Π(a : A) (f : map₊ (S. n) (pointed.Mk a)) (x : S n), f x = f base) : is_trunc (n.-2.+1) A :=
begin
apply iff.elim_right !is_trunc_iff_is_contr_loop,
intro a,
apply is_trunc_equiv_closed, apply pmap_sphere,
fapply is_contr.mk,
{ exact pmap.mk (λx, a) idp},
{ intro f, fapply pmap_eq,
{ intro x, esimp, refine !respect_pt⁻¹ ⬝ (!H ⬝ !H⁻¹)},
{ rewrite [▸*,con.right_inv,▸*,con.left_inv]}}
end
definition is_trunc_iff_map_sphere_constant
(H : Π(f : S n → A) (x : S n), f x = f base) : is_trunc (n.-2.+1) A :=
begin
apply is_trunc_of_pmap_sphere_constant,
intros, cases f with f p, esimp at *, apply H
end
definition pmap_sphere_constant_of_is_trunc' [H : is_trunc (n.-2.+1) A]
(a : A) (f : map₊ (S. n) (pointed.Mk a)) (x : S n) : f x = f base :=
begin
let H' := iff.elim_left (is_trunc_iff_is_contr_loop n A) H a,
let H'' := @is_trunc_equiv_closed_rev _ _ _ !pmap_sphere H',
assert p : (f = pmap.mk (λx, f base) (respect_pt f)),
apply is_hprop.elim,
exact ap10 (ap pmap.map p) x
end
definition pmap_sphere_constant_of_is_trunc [H : is_trunc (n.-2.+1) A]
(a : A) (f : map₊ (S. n) (pointed.Mk a)) (x y : S n) : f x = f y :=
let H := pmap_sphere_constant_of_is_trunc' a f in !H ⬝ !H⁻¹
definition map_sphere_constant_of_is_trunc [H : is_trunc (n.-2.+1) A]
(f : S n → A) (x y : S n) : f x = f y :=
pmap_sphere_constant_of_is_trunc (f base) (pmap.mk f idp) x y
definition map_sphere_constant_of_is_trunc_self [H : is_trunc (n.-2.+1) A]
(f : S n → A) (x : S n) : map_sphere_constant_of_is_trunc f x x = idp :=
!con.right_inv
end is_trunc