lean2/hott/algebra/precategory/yoneda.hlean

225 lines
9.5 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.precategory.yoneda
Author: Floris van Doorn
-/
--note: modify definition in category.set
import algebra.category.constructions .morphism
open category eq category.ops functor prod.ops is_trunc
set_option pp.beta true
namespace yoneda
set_option class.conservative false
--TODO: why does this take so much steps? (giving more information than "assoc" hardly helps)
definition representable_functor_assoc [C : Precategory] {a1 a2 a3 a4 a5 a6 : C}
(f1 : hom a5 a6) (f2 : hom a4 a5) (f3 : hom a3 a4) (f4 : hom a2 a3) (f5 : hom a1 a2)
: (f1 ∘ f2) ∘ f3 ∘ (f4 ∘ f5) = f1 ∘ (f2 ∘ f3 ∘ f4) ∘ f5 :=
calc
_ = f1 ∘ f2 ∘ f3 ∘ f4 ∘ f5 : assoc
... = f1 ∘ (f2 ∘ f3) ∘ f4 ∘ f5 : assoc
... = f1 ∘ ((f2 ∘ f3) ∘ f4) ∘ f5 : assoc
... = _ : assoc
--disturbing behaviour: giving the type of f "(x ⟶ y)" explicitly makes the unifier loop
definition representable_functor (C : Precategory) : Cᵒᵖ ×c C ⇒ set :=
functor.mk (λ(x : Cᵒᵖ ×c C), homset x.1 x.2)
(λ(x y : Cᵒᵖ ×c C) (f : _) (h : homset x.1 x.2), f.2 ∘⁅ C ⁆ (h ∘⁅ C ⁆ f.1))
proof (λ(x : Cᵒᵖ ×c C), eq_of_homotopy (λ(h : homset x.1 x.2), !id_left ⬝ !id_right)) qed
-- (λ(x y z : Cᵒᵖ ×c C) (g : y ⟶ z) (f : x ⟶ y), eq_of_homotopy (λ(h : hom x.1 x.2), representable_functor_assoc g.2 f.2 h f.1 g.1))
begin
intros (x, y, z, g, f), apply eq_of_homotopy, intro h,
exact (representable_functor_assoc g.2 f.2 h f.1 g.1),
end
end yoneda
open is_equiv equiv
namespace functor
open prod nat_trans
variables {C D E : Precategory} (F : C ×c D ⇒ E) (G : C ⇒ E ^c D)
definition functor_curry_ob [reducible] (c : C) : E ^c D :=
functor.mk (λd, F (c,d))
(λd d' g, F (id, g))
(λd, !respect_id)
(λd₁ d₂ d₃ g' g, proof calc
F (id, g' ∘ g) = F (id ∘ id, g' ∘ g) : {(id_compose c)⁻¹}
... = F ((id,g') ∘ (id, g)) : idp
... = F (id,g') ∘ F (id, g) : respect_comp F qed)
local abbreviation Fob := @functor_curry_ob
definition functor_curry_hom ⦃c c' : C⦄ (f : c ⟶ c') : Fob F c ⟹ Fob F c' :=
nat_trans.mk (λd, F (f, id))
(λd d' g, proof calc
F (id, g) ∘ F (f, id) = F (id ∘ f, g ∘ id) : respect_comp F
... = F (f, g ∘ id) : {id_left f}
... = F (f, g) : {id_right g}
... = F (f ∘ id, g) : {(id_right f)⁻¹}
... = F (f ∘ id, id ∘ g) : {(id_left g)⁻¹}
... = F (f, id) ∘ F (id, g) : (respect_comp F (f, id) (id, g))⁻¹ᵖ
qed)
local abbreviation Fhom := @functor_curry_hom
definition functor_curry_hom_def ⦃c c' : C⦄ (f : c ⟶ c') (d : D) :
(Fhom F f) d = homF F (f, id) := idp
definition functor_curry_id (c : C) : Fhom F (ID c) = nat_trans.id :=
nat_trans_eq_mk (λd, respect_id F _)
definition functor_curry_comp ⦃c c' c'' : C⦄ (f' : c' ⟶ c'') (f : c ⟶ c')
: Fhom F (f' ∘ f) = Fhom F f' ∘n Fhom F f :=
nat_trans_eq_mk (λd, calc
natural_map (Fhom F (f' ∘ f)) d = F (f' ∘ f, id) : functor_curry_hom_def
... = F (f' ∘ f, id ∘ id) : {(id_compose d)⁻¹}
... = F ((f',id) ∘ (f, id)) : idp
... = F (f',id) ∘ F (f, id) : respect_comp F
... = natural_map ((Fhom F f') ∘ (Fhom F f)) d : idp)
definition functor_curry [reducible] : C ⇒ E ^c D :=
functor.mk (functor_curry_ob F)
(functor_curry_hom F)
(functor_curry_id F)
(functor_curry_comp F)
definition functor_uncurry_ob [reducible] (p : C ×c D) : E :=
obF (G p.1) p.2
local abbreviation Gob := @functor_uncurry_ob
definition functor_uncurry_hom ⦃p p' : C ×c D⦄ (f : hom p p') : Gob G p ⟶ Gob G p' :=
homF (obF G p'.1) f.2 ∘ natural_map (homF G f.1) p.2
local abbreviation Ghom := @functor_uncurry_hom
definition functor_uncurry_id (p : C ×c D) : Ghom G (ID p) = id :=
calc
Ghom G (ID p) = homF (obF G p.1) id ∘ natural_map (homF G id) p.2 : idp
... = id ∘ natural_map (homF G id) p.2 : ap (λx, x ∘ _) (respect_id (obF G p.1) p.2)
... = id ∘ natural_map nat_trans.id p.2 : {respect_id G p.1}
... = id : id_compose
definition functor_uncurry_comp ⦃p p' p'' : C ×c D⦄ (f' : p' ⟶ p'') (f : p ⟶ p')
: Ghom G (f' ∘ f) = Ghom G f' ∘ Ghom G f :=
calc
Ghom G (f' ∘ f)
= homF (obF G p''.1) (f'.2 ∘ f.2) ∘ natural_map (homF G (f'.1 ∘ f.1)) p.2 : idp
... = (homF (obF G p''.1) f'.2 ∘ homF (obF G p''.1) f.2)
∘ natural_map (homF G (f'.1 ∘ f.1)) p.2 : {respect_comp (obF G p''.1) f'.2 f.2}
... = (homF (obF G p''.1) f'.2 ∘ homF (obF G p''.1) f.2)
∘ natural_map (homF G f'.1 ∘ homF G f.1) p.2 : {respect_comp G f'.1 f.1}
... = (homF (obF G p''.1) f'.2 ∘ homF (obF G p''.1) f.2)
∘ (natural_map (homF G f'.1) p.2 ∘ natural_map (homF G f.1) p.2) : idp
... = (homF (obF G p''.1) f'.2 ∘ homF (obF G p''.1) f.2)
∘ (natural_map (homF G f'.1) p.2 ∘ natural_map (homF G f.1) p.2) : idp
... = (homF (obF G p''.1) f'.2 ∘ natural_map (homF G f'.1) p'.2)
∘ (homF (obF G p'.1) f.2 ∘ natural_map (homF G f.1) p.2) :
square_prepostcompose (!naturality⁻¹ᵖ) _ _
... = Ghom G f' ∘ Ghom G f : idp
definition functor_uncurry [reducible] : C ×c D ⇒ E :=
functor.mk (functor_uncurry_ob G)
(functor_uncurry_hom G)
(functor_uncurry_id G)
(functor_uncurry_comp G)
-- open pi
-- definition functor_eq_mk'1 {F₁ F₂ : C → D} {H₁ : Π(a b : C), hom a b → hom (F₁ a) (F₁ b)}
-- {H₂ : Π(a b : C), hom a b → hom (F₂ a) (F₂ b)} (id₁ id₂ comp₁ comp₂)
-- (pF : F₁ = F₂) (pH : Π(a b : C) (f : hom a b), pF ▹ (H₁ a b f) = H₂ a b f)
-- : functor.mk F₁ H₁ id₁ comp₁ = functor.mk F₂ H₂ id₂ comp₂ :=
-- functor_eq_mk'' id₁ id₂ comp₁ comp₂ pF
-- (eq_of_homotopy (λc, eq_of_homotopy (λc', eq_of_homotopy (λf,
-- begin
-- apply concat, rotate_left 1, exact (pH c c' f),
-- apply concat, rotate_left 1,
-- exact (pi_transport_constant pF (H₁ c c') f),
-- apply (apD10' f),
-- apply concat, rotate_left 1,
-- exact (pi_transport_constant pF (H₁ c) c'),
-- apply (apD10' c'),
-- apply concat, rotate_left 1,
-- exact (pi_transport_constant pF H₁ c),
-- apply idp
-- end))))
-- definition functor_eq_mk1 {F₁ F₂ : C ⇒ D} : Π(p : obF F₁ = obF F₂),
-- (Π(a b : C) (f : hom a b), transport (λF, hom (F a) (F b)) p (F₁ f) = F₂ f)
-- → F₁ = F₂ :=
-- functor.rec_on F₁ (λO₁ H₁ id₁ comp₁, functor.rec_on F₂ (λO₂ H₂ id₂ comp₂ p, !functor_eq_mk'1))
--set_option pp.notation false
definition functor_uncurry_functor_curry : functor_uncurry (functor_curry F) = F :=
functor_eq_mk (λp, ap (obF F) !prod.eta)
begin
intros (cd, cd', fg),
cases cd with (c,d), cases cd' with (c',d'), cases fg with (f,g),
have H : (functor_uncurry (functor_curry F)) (f, g) = F (f,g),
from calc
(functor_uncurry (functor_curry F)) (f, g) = homF F (id, g) ∘ homF F (f, id) : idp
... = F (id ∘ f, g ∘ id) : respect_comp F (id,g) (f,id)
... = F (f, g ∘ id) : {id_left f}
... = F (f,g) : {id_right g},
rewrite H,
apply sorry
end
--set_option pp.implicit true
definition functor_curry_functor_uncurry : functor_curry (functor_uncurry G) = G :=
begin
fapply functor_eq_mk,
{intro c,
fapply functor_eq_mk,
{intro d, apply idp},
{intros (d, d', g),
have H : homF (functor_curry (functor_uncurry G) c) g = homF (G c) g,
from calc
homF (functor_curry (functor_uncurry G) c) g
= homF (G c) g ∘ natural_map (homF G (ID c)) d : idp
... = homF (G c) g ∘ natural_map (ID (G c)) d
: ap (λx, homF (G c) g ∘ natural_map x d) (respect_id G c)
... = homF (G c) g : id_right,
rewrite H,
-- esimp {idp},
apply sorry
}
},
apply sorry
end
definition equiv_functor_curry : (C ×c D ⇒ E) ≃ (C ⇒ E ^c D) :=
equiv.MK functor_curry
functor_uncurry
functor_curry_functor_uncurry
functor_uncurry_functor_curry
definition functor_prod_flip_ob : C ×c D ⇒ D ×c C :=
functor.mk sorry sorry sorry sorry
definition contravariant_yoneda_embedding : Cᵒᵖ ⇒ set ^c C :=
functor_curry !yoneda.representable_functor
end functor
-- Coq uses unit/counit definitions as basic
-- open yoneda precategory.product precategory.opposite functor morphism
-- --universe levels are given explicitly because Lean uses 6 variables otherwise
-- structure adjoint.{u v} [C D : Precategory.{u v}] (F : C ⇒ D) (G : D ⇒ C) : Type.{max u v} :=
-- (nat_iso : (representable_functor D) ∘f (prod_functor (opposite_functor F) (functor.ID D)) ⟹
-- (representable_functor C) ∘f (prod_functor (functor.ID (Cᵒᵖ)) G))
-- (is_iso_nat_iso : is_iso nat_iso)
-- infix `⊣`:55 := adjoint
-- namespace adjoint
-- universe variables l1 l2
-- variables [C D : Precategory.{l1 l2}] (F : C ⇒ D) (G : D ⇒ C)
-- end adjoint