2013-12-21 14:43:25 +00:00
|
|
|
Set: pp::colors
|
|
|
|
Set: pp::unicode
|
2013-12-29 03:20:04 +00:00
|
|
|
Imported 'cast'
|
2013-12-21 14:43:25 +00:00
|
|
|
Set: pp::colors
|
2014-01-08 20:34:55 +00:00
|
|
|
Defined: TypeM
|
2014-01-06 03:10:21 +00:00
|
|
|
λ (A A' : TypeM) (a : A) (b : A') (L2 : A' == A), let b' : A := cast L2 b, L3 : b == b' := cast::eq L2 b in L3 :
|
2014-01-08 08:38:39 +00:00
|
|
|
∀ (A A' : TypeM) (a : A) (b : A') (L2 : A' == A), b == cast L2 b
|
2013-12-21 14:43:25 +00:00
|
|
|
λ (A A' : TypeM)
|
|
|
|
(B : A → TypeM)
|
|
|
|
(B' : A' → TypeM)
|
2014-01-08 08:38:39 +00:00
|
|
|
(f : ∀ x : A, B x)
|
|
|
|
(g : ∀ x : A', B' x)
|
2013-12-21 14:43:25 +00:00
|
|
|
(a : A)
|
|
|
|
(b : A')
|
2014-01-08 08:38:39 +00:00
|
|
|
(H1 : (∀ x : A, B x) == (∀ x : A', B' x))
|
2013-12-21 14:43:25 +00:00
|
|
|
(H2 : f == g)
|
|
|
|
(H3 : a == b),
|
2014-01-06 03:10:21 +00:00
|
|
|
let L1 : A == A' := dominj H1,
|
|
|
|
L2 : A' == A := symm L1,
|
2013-12-21 14:43:25 +00:00
|
|
|
b' : A := cast L2 b,
|
2014-01-06 03:10:21 +00:00
|
|
|
L3 : b == b' := cast::eq L2 b,
|
|
|
|
L4 : a == b' := htrans H3 L3,
|
|
|
|
L5 : f a == f b' := congr2 f L4
|
2013-12-21 14:43:25 +00:00
|
|
|
in L5 :
|
2014-01-08 08:38:39 +00:00
|
|
|
∀ (A A' : TypeM)
|
2013-12-21 14:43:25 +00:00
|
|
|
(B : A → TypeM)
|
|
|
|
(B' : A' → TypeM)
|
2014-01-08 08:38:39 +00:00
|
|
|
(f : ∀ x : A, B x)
|
|
|
|
(g : ∀ x : A', B' x)
|
2013-12-21 14:43:25 +00:00
|
|
|
(a : A)
|
|
|
|
(b : A')
|
2014-01-08 08:38:39 +00:00
|
|
|
(H1 : (∀ x : A, B x) == (∀ x : A', B' x)),
|
2014-01-06 03:10:21 +00:00
|
|
|
f == g → a == b → f a == f (cast (symm (dominj H1)) b)
|