lean2/tests/lean/run/div_wf.lean

50 lines
1.6 KiB
Text
Raw Normal View History

import data.nat data.prod
open nat well_founded decidable prod eq.ops
-- Auxiliary lemma used to justify recursive call
private definition lt_aux {x y : nat} (H : 0 < y ∧ y ≤ x) : x - y < x :=
and.rec_on H (λ ypos ylex,
sub_lt (lt_of_lt_of_le ypos ylex) ypos)
definition wdiv.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat :=
if H : 0 < y ∧ y ≤ x then f (x - y) (lt_aux H) y + 1 else zero
definition wdiv (x y : nat) :=
fix wdiv.F x y
theorem wdiv_def (x y : nat) : wdiv x y = if 0 < y ∧ y ≤ x then wdiv (x - y) y + 1 else 0 :=
congr_fun (well_founded.fix_eq wdiv.F x) y
example : wdiv 5 2 = 2 :=
rfl
example : wdiv 9 3 = 3 :=
rfl
-- There is a little bit of cheating in the definition above.
-- I avoid the packing/unpacking into tuples.
-- The actual definitional package would not do that.
-- It will always pack things.
definition pair_nat.lt := lex nat.lt nat.lt -- Could also be (lex lt empty_rel)
2014-11-19 01:59:14 +00:00
definition pair_nat.lt.wf [instance] : well_founded pair_nat.lt :=
prod.lex.wf lt.wf lt.wf
infixl `≺`:50 := pair_nat.lt
-- Recursive lemma used to justify recursive call
definition plt_aux (x y : nat) (H : 0 < y ∧ y ≤ x) : (x - y, y) ≺ (x, y) :=
!lex.left (lt_aux H)
definition pdiv.F (p₁ : nat × nat) : (Π p₂ : nat × nat, p₂ ≺ p₁ → nat) → nat :=
prod.cases_on p₁ (λ x y f,
if H : 0 < y ∧ y ≤ x then f (x - y, y) (plt_aux x y H) + 1 else zero)
definition pdiv (x y : nat) :=
fix pdiv.F (x, y)
theorem pdiv_def (x y : nat) : pdiv x y = if 0 < y ∧ y ≤ x then pdiv (x - y) y + 1 else zero :=
well_founded.fix_eq pdiv.F (x, y)
example : pdiv 17 2 = 8 :=
2014-11-19 01:59:14 +00:00
rfl