lean2/hott/types/pointed.hlean

1062 lines
39 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014-2016 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jakob von Raumer, Floris van Doorn
Ported from Coq HoTT
The basic definitions are in init.pointed
-/
import .nat.basic ..arity ..prop_trunc
open is_trunc eq prod sigma nat equiv option is_equiv bool unit algebra sigma.ops sum
namespace pointed
variables {A B : Type}
definition pointed_loop [instance] [constructor] (a : A) : pointed (a = a) :=
pointed.mk idp
2014-12-12 04:14:53 +00:00
definition pointed_fun_closed [constructor] (f : A → B) [H : pointed A] : pointed B :=
pointed.mk (f pt)
definition loop [reducible] [constructor] (A : Type*) : Type* :=
pointed.mk' (point A = point A)
definition loopn [reducible] : → Type* → Type*
| loopn 0 X := X
| loopn (n+1) X := loop (loopn n X)
notation `Ω` := loop
notation `Ω[`:95 n:0 `]`:0 := loopn n
namespace ops
-- this is in a separate namespace because it caused type class inference to loop in some places
definition is_trunc_pointed_MK [instance] [priority 1100] (n : ℕ₋₂) {A : Type} (a : A)
[H : is_trunc n A] : is_trunc n (pointed.MK A a) :=
H
end ops
definition is_trunc_loop [instance] [priority 1100] (A : Type*)
(n : ℕ₋₂) [H : is_trunc (n.+1) A] : is_trunc n (Ω A) :=
!is_trunc_eq
definition loopn_zero_eq [unfold_full] (A : Type*)
: Ω[0] A = A := rfl
definition loopn_succ_eq [unfold_full] (k : ) (A : Type*)
: Ω[succ k] A = Ω (Ω[k] A) := rfl
definition rfln [constructor] [reducible] {n : } {A : Type*} : Ω[n] A := pt
definition refln [constructor] [reducible] (n : ) (A : Type*) : Ω[n] A := pt
2016-03-29 19:41:28 +00:00
definition refln_eq_refl [unfold_full] (A : Type*) (n : ) : rfln = rfl :> Ω[succ n] A := rfl
definition loopn_space [unfold 3] (A : Type) [H : pointed A] (n : ) : Type :=
Ω[n] (pointed.mk' A)
definition loop_mul {k : } {A : Type*} (mul : A → A → A) : Ω[k] A → Ω[k] A → Ω[k] A :=
begin cases k with k, exact mul, exact concat end
definition pType_eq {A B : Type*} (f : A ≃ B) (p : f pt = pt) : A = B :=
begin
cases A with A a, cases B with B b, esimp at *,
fapply apdt011 @pType.mk,
{ apply ua f},
{ rewrite [cast_ua, p]},
end
definition pType_eq_elim {A B : Type*} (p : A = B :> Type*)
: Σ(p : carrier A = carrier B :> Type), Point A =[p] Point B :=
by induction p; exact ⟨idp, idpo⟩
protected definition pType.sigma_char.{u} : pType.{u} ≃ Σ(X : Type.{u}), X :=
begin
fapply equiv.MK,
{ intro x, induction x with X x, exact ⟨X, x⟩},
{ intro x, induction x with X x, exact pointed.MK X x},
{ intro x, induction x with X x, reflexivity},
{ intro x, induction x with X x, reflexivity},
end
definition add_point [constructor] (A : Type) : Type* :=
pointed.Mk (none : option A)
postfix `₊`:(max+1) := add_point
-- the inclusion A → A₊ is called "some", the extra point "pt" or "none" ("@none A")
end pointed
namespace pointed
/- truncated pointed types -/
2016-03-29 19:41:28 +00:00
definition ptrunctype_eq {n : ℕ₋₂} {A B : n-Type*}
(p : A = B :> Type) (q : Point A =[p] Point B) : A = B :=
begin
induction A with A HA a, induction B with B HB b, esimp at *,
induction q, esimp,
refine ap010 (ptrunctype.mk A) _ a,
exact !is_prop.elim
end
2016-03-29 19:41:28 +00:00
definition ptrunctype_eq_of_pType_eq {n : ℕ₋₂} {A B : n-Type*} (p : A = B :> Type*)
: A = B :=
begin
cases pType_eq_elim p with q r,
exact ptrunctype_eq q r
end
definition is_trunc_ptrunctype [instance] {n : ℕ₋₂} (A : n-Type*) : is_trunc n A :=
trunctype.struct A
end pointed open pointed
namespace pointed
variables {A B C D : Type*} {f g h : A →* B}
/- categorical properties of pointed maps -/
definition pmap_of_map [constructor] {A B : Type} (f : A → B) (a : A) :
pointed.MK A a →* pointed.MK B (f a) :=
pmap.mk f idp
definition pid [constructor] [refl] (A : Type*) : A →* A :=
pmap.mk id idp
definition pcompose [constructor] [trans] (g : B →* C) (f : A →* B) : A →* C :=
pmap.mk (λa, g (f a)) (ap g (respect_pt f) ⬝ respect_pt g)
infixr ` ∘* `:60 := pcompose
definition passoc (h : C →* D) (g : B →* C) (f : A →* B) : (h ∘* g) ∘* f ~* h ∘* (g ∘* f) :=
begin
fconstructor, intro a, reflexivity,
cases A, cases B, cases C, cases D, cases f with f pf, cases g with g pg, cases h with h ph,
esimp at *,
induction pf, induction pg, induction ph, reflexivity
end
definition pid_pcompose [constructor] (f : A →* B) : pid B ∘* f ~* f :=
begin
fconstructor,
{ intro a, reflexivity},
{ reflexivity}
end
definition pcompose_pid [constructor] (f : A →* B) : f ∘* pid A ~* f :=
begin
fconstructor,
{ intro a, reflexivity},
{ reflexivity}
end
/- equivalences and equalities -/
definition pmap.sigma_char [constructor] {A B : Type*} : (A →* B) ≃ Σ(f : A → B), f pt = pt :=
begin
fapply equiv.MK : intros f,
{ exact ⟨f , respect_pt f⟩ },
all_goals cases f with f p,
{ exact pmap.mk f p },
all_goals reflexivity
end
definition pmap_eq (r : Πa, f a = g a) (s : respect_pt f = (r pt) ⬝ respect_pt g) : f = g :=
begin
cases f with f p, cases g with g q,
esimp at *,
fapply apd011 pmap.mk,
{ exact eq_of_homotopy r},
{ apply concato_eq, apply eq_pathover_Fl, apply inv_con_eq_of_eq_con,
rewrite [ap_eq_apd10, apd10_eq_of_homotopy, s]}
end
definition pmap_eq_of_homotopy {A B : Type*} {f g : A →* B} [is_set B] (p : f ~ g) : f = g :=
pmap_eq p !is_set.elim
definition pmap_equiv_left (A : Type) (B : Type*) : A₊ →* B ≃ (A → B) :=
begin
fapply equiv.MK,
{ intro f a, cases f with f p, exact f (some a)},
{ intro f, fconstructor,
intro a, cases a, exact pt, exact f a,
reflexivity},
{ intro f, reflexivity},
{ intro f, cases f with f p, esimp, fapply pmap_eq,
{ intro a, cases a; all_goals (esimp at *), exact p⁻¹},
{ esimp, exact !con.left_inv⁻¹}},
end
definition pmap_equiv_right (A : Type*) (B : Type)
: (Σ(b : B), A →* (pointed.Mk b)) ≃ (A → B) :=
begin
fapply equiv.MK,
{ intro u a, exact pmap.to_fun u.2 a},
{ intro f, refine ⟨f pt, _⟩, fapply pmap.mk,
intro a, esimp, exact f a,
reflexivity},
{ intro f, reflexivity},
{ intro u, cases u with b f, cases f with f p, esimp at *, induction p,
reflexivity}
end
-- pmap_pbool_pequiv is the pointed equivalence
definition pmap_pbool_equiv [constructor] (B : Type*) : (pbool →* B) ≃ B :=
begin
fapply equiv.MK,
{ intro f, cases f with f p, exact f tt},
{ intro b, fconstructor,
intro u, cases u, exact pt, exact b,
reflexivity},
{ intro b, reflexivity},
{ intro f, cases f with f p, esimp, fapply pmap_eq,
{ intro a, cases a; all_goals (esimp at *), exact p⁻¹},
{ esimp, exact !con.left_inv⁻¹}},
end
/- some specific pointed maps -/
-- The constant pointed map between any two types
definition pconst [constructor] (A B : Type*) : A →* B :=
pmap.mk (λ a, Point B) idp
-- the pointed type of pointed maps
definition ppmap [constructor] (A B : Type*) : Type* :=
pType.mk (A →* B) (pconst A B)
definition pcast [constructor] {A B : Type*} (p : A = B) : A →* B :=
pmap.mk (cast (ap pType.carrier p)) (by induction p; reflexivity)
definition pinverse [constructor] {X : Type*} : Ω X →* Ω X :=
pmap.mk eq.inverse idp
definition ap1 [constructor] (f : A →* B) : Ω A →* Ω B :=
begin
fconstructor,
{ intro p, exact !respect_pt⁻¹ ⬝ ap f p ⬝ !respect_pt},
{ esimp, apply con.left_inv}
end
definition apn (n : ) (f : A →* B) : Ω[n] A →* Ω[n] B :=
begin
induction n with n IH,
{ exact f},
{ esimp [loopn], exact ap1 IH}
end
2016-03-01 04:37:03 +00:00
prefix `Ω→`:(max+5) := ap1
notation `Ω→[`:95 n:0 `]`:0 := apn n
2016-03-01 04:37:03 +00:00
definition ptransport [constructor] {A : Type} (B : A → Type*) {a a' : A} (p : a = a')
: B a →* B a' :=
pmap.mk (transport B p) (apdt (λa, Point (B a)) p)
2016-03-01 04:37:03 +00:00
definition pmap_of_eq_pt [constructor] {A : Type} {a a' : A} (p : a = a') :
pointed.MK A a →* pointed.MK A a' :=
pmap.mk id p
definition pbool_pmap [constructor] {A : Type*} (a : A) : pbool →* A :=
pmap.mk (bool.rec pt a) idp
-- properties of pointed maps
definition apn_zero [unfold_full] (f : A →* B) : Ω→[0] f = f := idp
definition apn_succ [unfold_full] (n : ) (f : A →* B) : Ω→[n + 1] f = Ω→ (Ω→[n] f) := idp
theorem ap1_con (f : A →* B) (p q : Ω A) : ap1 f (p ⬝ q) = ap1 f p ⬝ ap1 f q :=
2016-03-01 04:37:03 +00:00
begin
rewrite [▸*,ap_con, +con.assoc, con_inv_cancel_left], repeat apply whisker_left
2016-03-01 04:37:03 +00:00
end
theorem ap1_inv (f : A →* B) (p : Ω A) : ap1 f p⁻¹ = (ap1 f p)⁻¹ :=
begin
rewrite [▸*,ap_inv, +con_inv, inv_inv, +con.assoc], repeat apply whisker_left
end
2016-03-01 04:37:03 +00:00
definition pinverse_con [constructor] {X : Type*} (p q : Ω X)
: pinverse (p ⬝ q) = pinverse q ⬝ pinverse p :=
!con_inv
2016-03-01 04:37:03 +00:00
definition pinverse_inv [constructor] {X : Type*} (p : Ω X)
: pinverse p⁻¹ = (pinverse p)⁻¹ :=
idp
2016-03-01 04:37:03 +00:00
theorem apn_con (n : ) (f : A →* B) (p q : Ω[n+1] A)
: apn (n+1) f (p ⬝ q) = apn (n+1) f p ⬝ apn (n+1) f q :=
by rewrite [+apn_succ, ap1_con]
2016-03-01 04:37:03 +00:00
theorem apn_inv (n : ) (f : A →* B) (p : Ω[n+1] A) : apn (n+1) f p⁻¹ = (apn (n+1) f p)⁻¹ :=
by rewrite [+apn_succ, ap1_inv]
definition is_equiv_ap1 (f : A →* B) [is_equiv f] : is_equiv (ap1 f) :=
begin
induction B with B b, induction f with f pf, esimp at *, cases pf, esimp,
apply is_equiv.homotopy_closed (ap f),
intro p, exact !idp_con⁻¹
end
definition is_equiv_apn (n : ) (f : A →* B) [H : is_equiv f]
2016-03-01 04:37:03 +00:00
: is_equiv (apn n f) :=
begin
induction n with n IH,
{ exact H},
{ exact is_equiv_ap1 (apn n f)}
end
definition is_equiv_pcast [instance] {A B : Type*} (p : A = B) : is_equiv (pcast p) :=
!is_equiv_cast
/- categorical properties of pointed homotopies -/
2016-03-01 04:37:03 +00:00
protected definition phomotopy.refl [constructor] [refl] (f : A →* B) : f ~* f :=
begin
fconstructor,
{ intro a, exact idp},
{ apply idp_con}
end
protected definition phomotopy.rfl [constructor] {f : A →* B} : f ~* f :=
phomotopy.refl f
protected definition phomotopy.trans [constructor] [trans] (p : f ~* g) (q : g ~* h)
: f ~* h :=
phomotopy.mk (λa, p a ⬝ q a)
abstract begin
induction f, induction g, induction p with p p', induction q with q q', esimp at *,
induction p', induction q', esimp, apply con.assoc
end end
protected definition phomotopy.symm [constructor] [symm] (p : f ~* g) : g ~* f :=
phomotopy.mk (λa, (p a)⁻¹)
abstract begin
induction f, induction p with p p', esimp at *,
induction p', esimp, apply inv_con_cancel_left
end end
infix ` ⬝* `:75 := phomotopy.trans
postfix `⁻¹*`:(max+1) := phomotopy.symm
2016-02-16 23:25:40 +00:00
/- equalities and equivalences relating pointed homotopies -/
definition phomotopy.sigma_char [constructor] {A B : Type*} (f g : A →* B)
: (f ~* g) ≃ Σ(p : f ~ g), p pt ⬝ respect_pt g = respect_pt f :=
begin
fapply equiv.MK : intros h,
{ exact ⟨h , to_homotopy_pt h⟩ },
all_goals cases h with h p,
{ exact phomotopy.mk h p },
all_goals reflexivity
end
definition is_trunc_pmap [instance] (n : ℕ₋₂) (A B : Type*) [is_trunc n B] :
is_trunc n (A →* B) :=
is_trunc_equiv_closed_rev _ !pmap.sigma_char
definition is_trunc_ppmap [instance] (n : ℕ₋₂) {A B : Type*} [is_trunc n B] :
is_trunc n (ppmap A B) :=
!is_trunc_pmap
definition phomotopy_of_eq [constructor] {A B : Type*} {f g : A →* B} (p : f = g) : f ~* g :=
phomotopy.mk (ap010 pmap.to_fun p) begin induction p, apply idp_con end
definition pconcat_eq [constructor] {A B : Type*} {f g h : A →* B} (p : f ~* g) (q : g = h)
: f ~* h :=
p ⬝* phomotopy_of_eq q
definition eq_pconcat [constructor] {A B : Type*} {f g h : A →* B} (p : f = g) (q : g ~* h)
: f ~* h :=
phomotopy_of_eq p ⬝* q
infix ` ⬝*p `:75 := pconcat_eq
infix ` ⬝p* `:75 := eq_pconcat
definition eq_of_phomotopy (p : f ~* g) : f = g :=
begin
fapply pmap_eq,
{ intro a, exact p a},
{ exact !to_homotopy_pt⁻¹}
end
definition pmap_eq_equiv {A B : Type*} (f g : A →* B) : (f = g) ≃ (f ~* g) :=
calc (f = g) ≃ pmap.sigma_char f = pmap.sigma_char g
: eq_equiv_fn_eq pmap.sigma_char f g
... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g),
pathover (λh, h pt = pt) (respect_pt f) p (respect_pt g)
: sigma_eq_equiv _ _
... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), respect_pt f = ap (λh, h pt) p ⬝ respect_pt g
: sigma_equiv_sigma_right (λp, eq_pathover_equiv_Fl p (respect_pt f)
(respect_pt g))
... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), respect_pt f = ap10 p pt ⬝ respect_pt g
: sigma_equiv_sigma_right
(λp, equiv_eq_closed_right _ (whisker_right (ap_eq_apd10 p _) _))
... ≃ Σ(p : pmap.to_fun f ~ pmap.to_fun g), respect_pt f = p pt ⬝ respect_pt g
: sigma_equiv_sigma_left' eq_equiv_homotopy
... ≃ Σ(p : pmap.to_fun f ~ pmap.to_fun g), p pt ⬝ respect_pt g = respect_pt f
: sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _)
... ≃ (f ~* g) : phomotopy.sigma_char f g
2016-03-29 19:41:28 +00:00
/-
Pointed maps respecting pointed homotopies.
2016-03-29 19:41:28 +00:00
In general we need function extensionality for pap,
but for particular F we can do it without function extensionality.
This is preferred, because such pointed homotopies compute
2016-03-29 19:41:28 +00:00
-/
definition pap (F : (A →* B) → (C →* D)) {f g : A →* B} (p : f ~* g) : F f ~* F g :=
phomotopy.mk (ap010 (λf, pmap.to_fun (F f)) (eq_of_phomotopy p))
begin cases eq_of_phomotopy p, apply idp_con end
definition ap1_phomotopy {f g : A →* B} (p : f ~* g)
2016-02-16 23:25:40 +00:00
: ap1 f ~* ap1 g :=
2016-03-29 19:41:28 +00:00
begin
2016-02-16 23:25:40 +00:00
induction p with p q, induction f with f pf, induction g with g pg, induction B with B b,
esimp at *, induction q, induction pg,
fapply phomotopy.mk,
{ intro l, esimp, refine _ ⬝ !idp_con⁻¹, refine !con.assoc ⬝ _, apply inv_con_eq_of_eq_con,
apply ap_con_eq_con_ap},
{ induction A with A a, unfold [ap_con_eq_con_ap], generalize p a, generalize g a, intro b q,
2016-03-29 19:41:28 +00:00
induction q, reflexivity}
end
2016-02-16 23:25:40 +00:00
definition apn_phomotopy {f g : A →* B} (n : ) (p : f ~* g) : apn n f ~* apn n g :=
begin
induction n with n IH,
{ exact p},
{ exact ap1_phomotopy IH}
end
/- pointed homotopies between the given pointed maps -/
definition ap1_pid [constructor] {A : Type*} : ap1 (pid A) ~* pid (Ω A) :=
begin
fapply phomotopy.mk,
{ intro p, esimp, refine !idp_con ⬝ !ap_id},
{ reflexivity}
end
definition ap1_pinverse {A : Type*} : ap1 (@pinverse A) ~* @pinverse (Ω A) :=
begin
fapply phomotopy.mk,
{ intro p, esimp, refine !idp_con ⬝ _, exact !inv_eq_inv2⁻¹ },
{ reflexivity}
end
definition ap1_pcompose (g : B →* C) (f : A →* B) : ap1 (g ∘* f) ~* ap1 g ∘* ap1 f :=
begin
induction B, induction C, induction g with g pg, induction f with f pf, esimp at *,
induction pg, induction pf,
fconstructor,
{ intro p, esimp, apply whisker_left, exact ap_compose g f p ⬝ ap (ap g) !idp_con⁻¹},
{ reflexivity}
end
definition ap1_pcompose_pinverse (f : A →* B) : ap1 f ∘* pinverse ~* pinverse ∘* ap1 f :=
begin
fconstructor,
{ intro p, esimp, refine !con.assoc ⬝ _ ⬝ !con_inv⁻¹, apply whisker_left,
refine whisker_right !ap_inv _ ⬝ _ ⬝ !con_inv⁻¹, apply whisker_left,
exact !inv_inv⁻¹},
{ induction B with B b, induction f with f pf, esimp at *, induction pf, reflexivity},
end
definition ap1_pconst (A B : Type*) : Ω→(pconst A B) ~* pconst (Ω A) (Ω B) :=
phomotopy.mk (λp, idp_con _ ⬝ ap_constant p pt) rfl
definition ptransport_change_eq [constructor] {A : Type} (B : A → Type*) {a a' : A} {p q : a = a'}
(r : p = q) : ptransport B p ~* ptransport B q :=
phomotopy.mk (λb, ap (λp, transport B p b) r) begin induction r, apply idp_con end
definition pnatural_square {A B : Type} (X : B → Type*) {f g : A → B}
(h : Πa, X (f a) →* X (g a)) {a a' : A} (p : a = a') :
h a' ∘* ptransport X (ap f p) ~* ptransport X (ap g p) ∘* h a :=
by induction p; exact !pcompose_pid ⬝* !pid_pcompose⁻¹*
definition apn_pid [constructor] {A : Type*} (n : ) : apn n (pid A) ~* pid (Ω[n] A) :=
begin
induction n with n IH,
{ reflexivity},
{ exact ap1_phomotopy IH ⬝* ap1_pid}
end
definition apn_pconst (A B : Type*) (n : ) :
apn n (pconst A B) ~* pconst (Ω[n] A) (Ω[n] B) :=
begin
induction n with n IH,
{ reflexivity },
{ exact ap1_phomotopy IH ⬝* !ap1_pconst }
end
2016-03-01 04:37:03 +00:00
definition apn_pcompose (n : ) (g : B →* C) (f : A →* B) :
apn n (g ∘* f) ~* apn n g ∘* apn n f :=
begin
induction n with n IH,
{ reflexivity},
{ refine ap1_phomotopy IH ⬝* _, apply ap1_pcompose}
end
definition pcast_idp [constructor] {A : Type*} : pcast (idpath A) ~* pid A :=
by reflexivity
2016-03-01 04:37:03 +00:00
definition pinverse_pinverse (A : Type*) : pinverse ∘* pinverse ~* pid (Ω A) :=
begin
fapply phomotopy.mk,
{ apply inv_inv},
{ reflexivity}
end
definition pcast_ap_loop [constructor] {A B : Type*} (p : A = B) :
pcast (ap Ω p) ~* ap1 (pcast p) :=
begin
fapply phomotopy.mk,
{ intro a, induction p, esimp, exact (!idp_con ⬝ !ap_id)⁻¹},
{ induction p, reflexivity}
end
definition ap1_pmap_of_map [constructor] {A B : Type} (f : A → B) (a : A) :
ap1 (pmap_of_map f a) ~* pmap_of_map (ap f) (idpath a) :=
begin
fapply phomotopy.mk,
{ intro a, esimp, apply idp_con},
{ reflexivity}
end
definition pcast_commute [constructor] {A : Type} {B C : A → Type*} (f : Πa, B a →* C a)
{a₁ a₂ : A} (p : a₁ = a₂) : pcast (ap C p) ∘* f a₁ ~* f a₂ ∘* pcast (ap B p) :=
phomotopy.mk
begin induction p, reflexivity end
begin induction p, esimp, refine !idp_con ⬝ !idp_con ⬝ !ap_id⁻¹ end
/- pointed equivalences -/
/- constructors / projections + variants -/
definition pequiv_of_pmap [constructor] (f : A →* B) (H : is_equiv f) : A ≃* B :=
pequiv.mk f _ (respect_pt f)
definition pequiv_of_equiv [constructor] (f : A ≃ B) (H : f pt = pt) : A ≃* B :=
pequiv.mk f _ H
protected definition pequiv.MK [constructor] (f : A →* B) (g : B → A)
(gf : Πa, g (f a) = a) (fg : Πb, f (g b) = b) : A ≃* B :=
pequiv.mk f (adjointify f g fg gf) (respect_pt f)
definition equiv_of_pequiv [constructor] (f : A ≃* B) : A ≃ B :=
equiv.mk f _
definition to_pinv [constructor] (f : A ≃* B) : B →* A :=
pmap.mk f⁻¹ ((ap f⁻¹ (respect_pt f))⁻¹ ⬝ left_inv f pt)
definition to_pmap_pequiv_of_pmap {A B : Type*} (f : A →* B) (H : is_equiv f)
: pequiv.to_pmap (pequiv_of_pmap f H) = f :=
by cases f; reflexivity
2016-03-29 19:41:28 +00:00
/-
A version of pequiv.MK with stronger conditions.
The advantage of defining a pointed equivalence with this definition is that there is a
pointed homotopy between the inverse of the resulting equivalence and the given pointed map g.
This is not the case when using `pequiv.MK` (if g is a pointed map),
that will only give an ordinary homotopy.
-/
protected definition pequiv.MK2 [constructor] (f : A →* B) (g : B →* A)
(gf : g ∘* f ~* !pid) (fg : f ∘* g ~* !pid) : A ≃* B :=
pequiv.MK f g gf fg
definition to_pmap_pequiv_MK2 [constructor] (f : A →* B) (g : B →* A)
(gf : g ∘* f ~* !pid) (fg : f ∘* g ~* !pid) : pequiv.MK2 f g gf fg ~* f :=
phomotopy.mk (λb, idp) !idp_con
definition to_pinv_pequiv_MK2 [constructor] (f : A →* B) (g : B →* A)
(gf : g ∘* f ~* !pid) (fg : f ∘* g ~* !pid) : to_pinv (pequiv.MK2 f g gf fg) ~* g :=
phomotopy.mk (λb, idp)
abstract [irreducible] begin
esimp,
note H := to_homotopy_pt gf, note H2 := to_homotopy_pt fg,
note H3 := eq_top_of_square (natural_square (to_homotopy fg) (respect_pt f)),
rewrite [▸* at *, H, H3, H2, ap_id, - +con.assoc, ap_compose' f g, con_inv,
- ap_inv, - +ap_con g],
apply whisker_right, apply ap02 g,
rewrite [ap_con, - + con.assoc, +ap_inv, +inv_con_cancel_right, con.left_inv],
end end
/- categorical properties of pointed equivalences -/
protected definition pequiv.refl [refl] [constructor] (A : Type*) : A ≃* A :=
pequiv_of_pmap !pid !is_equiv_id
protected definition pequiv.rfl [constructor] : A ≃* A :=
pequiv.refl A
protected definition pequiv.symm [symm] [constructor] (f : A ≃* B) : B ≃* A :=
pequiv_of_pmap (to_pinv f) !is_equiv_inv
protected definition pequiv.trans [trans] [constructor] (f : A ≃* B) (g : B ≃* C) : A ≃* C :=
pequiv_of_pmap (g ∘* f) !is_equiv_compose
definition pequiv_compose {A B C : Type*} (g : B ≃* C) (f : A ≃* B) : A ≃* C :=
pequiv_of_pmap (g ∘* f) (is_equiv_compose g f)
infixr ` ∘*ᵉ `:60 := pequiv_compose
postfix `⁻¹ᵉ*`:(max + 1) := pequiv.symm
infix ` ⬝e* `:75 := pequiv.trans
/- more on pointed equivalences -/
definition pequiv_ap [constructor] {A : Type} (B : A → Type*) {a a' : A} (p : a = a')
: B a ≃* B a' :=
pequiv_of_pmap (ptransport B p) !is_equiv_tr
definition to_pmap_pequiv_trans {A B C : Type*} (f : A ≃* B) (g : B ≃* C)
: pequiv.to_pmap (f ⬝e* g) = g ∘* f :=
!to_pmap_pequiv_of_pmap
definition pequiv_change_fun [constructor] (f : A ≃* B) (f' : A →* B) (Heq : f ~ f') : A ≃* B :=
pequiv_of_pmap f' (is_equiv.homotopy_closed f Heq)
definition pequiv_change_inv [constructor] (f : A ≃* B) (f' : B →* A) (Heq : to_pinv f ~ f')
: A ≃* B :=
pequiv.MK f f' (to_left_inv (equiv_change_inv f Heq)) (to_right_inv (equiv_change_inv f Heq))
definition pequiv_rect' (f : A ≃* B) (P : A → B → Type)
(g : Πb, P (f⁻¹ b) b) (a : A) : P a (f a) :=
left_inv f a ▸ g (f a)
definition pua {A B : Type*} (f : A ≃* B) : A = B :=
pType_eq (equiv_of_pequiv f) !respect_pt
definition pequiv_of_eq [constructor] {A B : Type*} (p : A = B) : A ≃* B :=
pequiv_of_pmap (pcast p) !is_equiv_tr
definition peconcat_eq {A B C : Type*} (p : A ≃* B) (q : B = C) : A ≃* C :=
p ⬝e* pequiv_of_eq q
definition eq_peconcat {A B C : Type*} (p : A = B) (q : B ≃* C) : A ≃* C :=
pequiv_of_eq p ⬝e* q
definition eq_of_pequiv {A B : Type*} (p : A ≃* B) : A = B :=
pType_eq (equiv_of_pequiv p) !respect_pt
definition peap {A B : Type*} (F : Type* → Type*) (p : A ≃* B) : F A ≃* F B :=
pequiv_of_pmap (pcast (ap F (eq_of_pequiv p))) begin cases eq_of_pequiv p, apply is_equiv_id end
infix ` ⬝e*p `:75 := peconcat_eq
infix ` ⬝pe* `:75 := eq_peconcat
definition pequiv_of_eq_commute [constructor] {A : Type} {B C : A → Type*} (f : Πa, B a →* C a)
{a₁ a₂ : A} (p : a₁ = a₂) : pequiv_of_eq (ap C p) ∘* f a₁ ~* f a₂ ∘* pequiv_of_eq (ap B p) :=
pcast_commute f p
/-
the theorem pequiv_eq, which gives a condition for two pointed equivalences are equal
is in types.equiv to avoid circular imports
-/
/- computation rules of pointed homotopies, possibly combined with pointed equivalences -/
definition pwhisker_left [constructor] (h : B →* C) (p : f ~* g) : h ∘* f ~* h ∘* g :=
phomotopy.mk (λa, ap h (p a))
abstract begin
induction A, induction B, induction C,
induction f with f pf, induction g with g pg, induction h with h ph,
induction p with p p', esimp at *, induction ph, induction pg, induction p', reflexivity
end end
definition pwhisker_right [constructor] (h : C →* A) (p : f ~* g) : f ∘* h ~* g ∘* h :=
phomotopy.mk (λa, p (h a))
abstract begin
induction A, induction B, induction C,
induction f with f pf, induction g with g pg, induction h with h ph,
induction p with p p', esimp at *, induction ph, induction pg, induction p', esimp,
exact !idp_con⁻¹
end end
definition pconcat2 [constructor] {A B C : Type*} {h i : B →* C} {f g : A →* B}
(q : h ~* i) (p : f ~* g) : h ∘* f ~* i ∘* g :=
pwhisker_left _ p ⬝* pwhisker_right _ q
definition pleft_inv (f : A ≃* B) : f⁻¹ᵉ* ∘* f ~* pid A :=
phomotopy.mk (left_inv f)
abstract begin
esimp, symmetry, apply con_inv_cancel_left
end end
definition pright_inv (f : A ≃* B) : f ∘* f⁻¹ᵉ* ~* pid B :=
phomotopy.mk (right_inv f)
abstract begin
induction f with f H p, esimp,
rewrite [ap_con, +ap_inv, -adj f, -ap_compose],
note q := natural_square (right_inv f) p,
rewrite [ap_id at q],
apply eq_bot_of_square,
exact q
end end
definition pcancel_left (f : B ≃* C) {g h : A →* B} (p : f ∘* g ~* f ∘* h) : g ~* h :=
begin
refine _⁻¹* ⬝* pwhisker_left f⁻¹ᵉ* p ⬝* _:
refine !passoc⁻¹* ⬝* _:
refine pwhisker_right _ (pleft_inv f) ⬝* _:
apply pid_pcompose
end
definition pcancel_right (f : A ≃* B) {g h : B →* C} (p : g ∘* f ~* h ∘* f) : g ~* h :=
begin
refine _⁻¹* ⬝* pwhisker_right f⁻¹ᵉ* p ⬝* _:
refine !passoc ⬝* _:
refine pwhisker_left _ (pright_inv f) ⬝* _:
apply pcompose_pid
end
definition phomotopy_pinv_right_of_phomotopy {f : A ≃* B} {g : B →* C} {h : A →* C}
(p : g ∘* f ~* h) : g ~* h ∘* f⁻¹ᵉ* :=
begin
refine _ ⬝* pwhisker_right _ p, symmetry,
refine !passoc ⬝* _,
refine pwhisker_left _ (pright_inv f) ⬝* _,
apply pcompose_pid
end
definition phomotopy_of_pinv_right_phomotopy {f : B ≃* A} {g : B →* C} {h : A →* C}
(p : g ∘* f⁻¹ᵉ* ~* h) : g ~* h ∘* f :=
begin
refine _ ⬝* pwhisker_right _ p, symmetry,
refine !passoc ⬝* _,
refine pwhisker_left _ (pleft_inv f) ⬝* _,
apply pcompose_pid
end
definition pinv_right_phomotopy_of_phomotopy {f : A ≃* B} {g : B →* C} {h : A →* C}
(p : h ~* g ∘* f) : h ∘* f⁻¹ᵉ* ~* g :=
(phomotopy_pinv_right_of_phomotopy p⁻¹*)⁻¹*
definition phomotopy_of_phomotopy_pinv_right {f : B ≃* A} {g : B →* C} {h : A →* C}
(p : h ~* g ∘* f⁻¹ᵉ*) : h ∘* f ~* g :=
(phomotopy_of_pinv_right_phomotopy p⁻¹*)⁻¹*
definition phomotopy_pinv_left_of_phomotopy {f : B ≃* C} {g : A →* B} {h : A →* C}
(p : f ∘* g ~* h) : g ~* f⁻¹ᵉ* ∘* h :=
begin
refine _ ⬝* pwhisker_left _ p, symmetry,
refine !passoc⁻¹* ⬝* _,
refine pwhisker_right _ (pleft_inv f) ⬝* _,
apply pid_pcompose
end
definition phomotopy_of_pinv_left_phomotopy {f : C ≃* B} {g : A →* B} {h : A →* C}
(p : f⁻¹ᵉ* ∘* g ~* h) : g ~* f ∘* h :=
begin
refine _ ⬝* pwhisker_left _ p, symmetry,
refine !passoc⁻¹* ⬝* _,
refine pwhisker_right _ (pright_inv f) ⬝* _,
apply pid_pcompose
end
definition pinv_left_phomotopy_of_phomotopy {f : B ≃* C} {g : A →* B} {h : A →* C}
(p : h ~* f ∘* g) : f⁻¹ᵉ* ∘* h ~* g :=
(phomotopy_pinv_left_of_phomotopy p⁻¹*)⁻¹*
definition phomotopy_of_phomotopy_pinv_left {f : C ≃* B} {g : A →* B} {h : A →* C}
(p : h ~* f⁻¹ᵉ* ∘* g) : f ∘* h ~* g :=
(phomotopy_of_pinv_left_phomotopy p⁻¹*)⁻¹*
definition pcompose2 {A B C : Type*} {g g' : B →* C} {f f' : A →* B} (p : f ~* f') (q : g ~* g') :
g ∘* f ~* g' ∘* f' :=
pwhisker_right f q ⬝* pwhisker_left g' p
infixr ` ◾* `:80 := pcompose2
definition phomotopy_pinv_of_phomotopy_pid {A B : Type*} {f : A →* B} {g : B ≃* A}
(p : g ∘* f ~* pid A) : f ~* g⁻¹ᵉ* :=
phomotopy_pinv_left_of_phomotopy p ⬝* !pcompose_pid
definition phomotopy_pinv_of_phomotopy_pid' {A B : Type*} {f : A →* B} {g : B ≃* A}
(p : f ∘* g ~* pid B) : f ~* g⁻¹ᵉ* :=
phomotopy_pinv_right_of_phomotopy p ⬝* !pid_pcompose
definition pinv_phomotopy_of_pid_phomotopy {A B : Type*} {f : A →* B} {g : B ≃* A}
(p : pid A ~* g ∘* f) : g⁻¹ᵉ* ~* f :=
(phomotopy_pinv_of_phomotopy_pid p⁻¹*)⁻¹*
definition pinv_phomotopy_of_pid_phomotopy' {A B : Type*} {f : A →* B} {g : B ≃* A}
(p : pid B ~* f ∘* g) : g⁻¹ᵉ* ~* f :=
(phomotopy_pinv_of_phomotopy_pid' p⁻¹*)⁻¹*
definition pinv_pinv {A B : Type*} (f : A ≃* B) : (f⁻¹ᵉ*)⁻¹ᵉ* ~* f :=
(phomotopy_pinv_of_phomotopy_pid (pleft_inv f))⁻¹*
definition pinv2 {A B : Type*} {f f' : A ≃* B} (p : f ~* f') : f⁻¹ᵉ* ~* f'⁻¹ᵉ* :=
phomotopy_pinv_of_phomotopy_pid (pinv_right_phomotopy_of_phomotopy (!pid_pcompose ⬝* p)⁻¹*)
postfix [parsing_only] `⁻²*`:(max+10) := pinv2
definition trans_pinv {A B C : Type*} (f : A ≃* B) (g : B ≃* C) :
(f ⬝e* g)⁻¹ᵉ* ~* f⁻¹ᵉ* ∘* g⁻¹ᵉ* :=
begin
refine (phomotopy_pinv_of_phomotopy_pid _)⁻¹*,
refine !passoc ⬝* _,
refine pwhisker_left _ (!passoc⁻¹* ⬝* pwhisker_right _ !pright_inv ⬝* !pid_pcompose) ⬝* _,
apply pright_inv
end
definition pinv_trans_pinv_left {A B C : Type*} (f : B ≃* A) (g : B ≃* C) :
(f⁻¹ᵉ* ⬝e* g)⁻¹ᵉ* ~* f ∘* g⁻¹ᵉ* :=
!trans_pinv ⬝* pwhisker_right _ !pinv_pinv
definition pinv_trans_pinv_right {A B C : Type*} (f : A ≃* B) (g : C ≃* B) :
(f ⬝e* g⁻¹ᵉ*)⁻¹ᵉ* ~* f⁻¹ᵉ* ∘* g :=
!trans_pinv ⬝* pwhisker_left _ !pinv_pinv
definition pinv_trans_pinv_pinv {A B C : Type*} (f : B ≃* A) (g : C ≃* B) :
(f⁻¹ᵉ* ⬝e* g⁻¹ᵉ*)⁻¹ᵉ* ~* f ∘* g :=
!trans_pinv ⬝* !pinv_pinv ◾* !pinv_pinv
definition pinv_pcompose_cancel_left {A B C : Type*} (g : B ≃* C) (f : A →* B) :
g⁻¹ᵉ* ∘* (g ∘* f) ~* f :=
!passoc⁻¹* ⬝* pwhisker_right f !pleft_inv ⬝* !pid_pcompose
definition pcompose_pinv_cancel_left {A B C : Type*} (g : C ≃* B) (f : A →* B) :
g ∘* (g⁻¹ᵉ* ∘* f) ~* f :=
!passoc⁻¹* ⬝* pwhisker_right f !pright_inv ⬝* !pid_pcompose
definition pinv_pcompose_cancel_right {A B C : Type*} (g : B →* C) (f : B ≃* A) :
(g ∘* f⁻¹ᵉ*) ∘* f ~* g :=
!passoc ⬝* pwhisker_left g !pleft_inv ⬝* !pcompose_pid
definition pcompose_pinv_cancel_right {A B C : Type*} (g : B →* C) (f : A ≃* B) :
(g ∘* f) ∘* f⁻¹ᵉ* ~* g :=
!passoc ⬝* pwhisker_left g !pright_inv ⬝* !pcompose_pid
/- pointed equivalences between particular pointed types -/
definition loopn_pequiv_loopn [constructor] (n : ) (f : A ≃* B) : Ω[n] A ≃* Ω[n] B :=
pequiv.MK2 (apn n f) (apn n f⁻¹ᵉ*)
abstract begin
induction n with n IH,
{ apply pleft_inv},
{ replace nat.succ n with n + 1,
rewrite [+apn_succ],
refine !ap1_pcompose⁻¹* ⬝* _,
refine ap1_phomotopy IH ⬝* _,
apply ap1_pid}
end end
abstract begin
induction n with n IH,
{ apply pright_inv},
{ replace nat.succ n with n + 1,
rewrite [+apn_succ],
refine !ap1_pcompose⁻¹* ⬝* _,
refine ap1_phomotopy IH ⬝* _,
apply ap1_pid}
end end
definition loop_pequiv_loop [constructor] (f : A ≃* B) : Ω A ≃* Ω B :=
loopn_pequiv_loopn 1 f
definition to_pmap_loopn_pequiv_loopn [constructor] (n : ) (f : A ≃* B)
: loopn_pequiv_loopn n f ~* apn n f :=
!to_pmap_pequiv_MK2
definition to_pinv_loopn_pequiv_loopn [constructor] (n : ) (f : A ≃* B)
: (loopn_pequiv_loopn n f)⁻¹ᵉ* ~* apn n f⁻¹ᵉ* :=
!to_pinv_pequiv_MK2
definition loopn_pequiv_loopn_con (n : ) (f : A ≃* B) (p q : Ω[n+1] A)
: loopn_pequiv_loopn (n+1) f (p ⬝ q) =
loopn_pequiv_loopn (n+1) f p ⬝ loopn_pequiv_loopn (n+1) f q :=
ap1_con (loopn_pequiv_loopn n f) p q
definition loop_pequiv_loop_con {A B : Type*} (f : A ≃* B) (p q : Ω A)
: loop_pequiv_loop f (p ⬝ q) = loop_pequiv_loop f p ⬝ loop_pequiv_loop f q :=
loopn_pequiv_loopn_con 0 f p q
2016-03-29 19:41:28 +00:00
definition loopn_pequiv_loopn_rfl (n : ) (A : Type*) :
loopn_pequiv_loopn n (pequiv.refl A) ~* pequiv.refl (Ω[n] A) :=
begin
exact !to_pmap_loopn_pequiv_loopn ⬝* apn_pid n,
end
2016-03-29 19:41:28 +00:00
definition loop_pequiv_loop_rfl (A : Type*) :
loop_pequiv_loop (pequiv.refl A) ~* pequiv.refl (Ω A) :=
2016-03-29 19:41:28 +00:00
loopn_pequiv_loopn_rfl 1 A
definition pmap_functor [constructor] {A A' B B' : Type*} (f : A' →* A) (g : B →* B') :
ppmap A B →* ppmap A' B' :=
pmap.mk (λh, g ∘* h ∘* f)
abstract begin
fapply pmap_eq,
{ esimp, intro a, exact respect_pt g},
{ rewrite [▸*, ap_constant], apply idp_con}
end end
definition pequiv_pinverse (A : Type*) : Ω A ≃* Ω A :=
pequiv_of_pmap pinverse !is_equiv_eq_inverse
definition pequiv_of_eq_pt [constructor] {A : Type} {a a' : A} (p : a = a') :
pointed.MK A a ≃* pointed.MK A a' :=
pequiv_of_pmap (pmap_of_eq_pt p) !is_equiv_id
definition pointed_eta_pequiv [constructor] (A : Type*) : A ≃* pointed.MK A pt :=
pequiv.mk id !is_equiv_id idp
/- every pointed map is homotopic to one of the form `pmap_of_map _ _`, up to some
pointed equivalences -/
definition phomotopy_pmap_of_map {A B : Type*} (f : A →* B) :
(pointed_eta_pequiv B ⬝e* (pequiv_of_eq_pt (respect_pt f))⁻¹ᵉ*) ∘* f ∘*
(pointed_eta_pequiv A)⁻¹ᵉ* ~* pmap_of_map f pt :=
begin
fapply phomotopy.mk,
{ reflexivity},
{ esimp [pequiv.trans, pequiv.symm],
exact !con.right_inv⁻¹ ⬝ ((!idp_con⁻¹ ⬝ !ap_id⁻¹) ◾ (!ap_id⁻¹⁻² ⬝ !idp_con⁻¹)), }
end
2016-03-29 19:41:28 +00:00
/- -- TODO
definition pmap_pequiv_pmap {A A' B B' : Type*} (f : A ≃* A') (g : B ≃* B') :
ppmap A B ≃* ppmap A' B' :=
pequiv.MK (pmap_functor f⁻¹ᵉ* g) (pmap_functor f g⁻¹ᵉ*)
abstract begin
intro a, esimp, apply pmap_eq,
{ esimp, },
{ }
end end
abstract begin
end end
-/
/- properties of iterated loop space -/
variable (A)
definition loopn_succ_in (n : ) : Ω[succ n] A ≃* Ω[n] (Ω A) :=
begin
induction n with n IH,
{ reflexivity},
{ exact loop_pequiv_loop IH}
end
definition loopn_add (n m : ) : Ω[n] (Ω[m] A) ≃* Ω[m+n] (A) :=
begin
induction n with n IH,
{ reflexivity},
{ exact loop_pequiv_loop IH}
end
definition loopn_succ_out (n : ) : Ω[succ n] A ≃* Ω(Ω[n] A) :=
by reflexivity
variable {A}
theorem loopn_succ_in_con {n : } (p q : Ω[succ (succ n)] A) :
loopn_succ_in A (succ n) (p ⬝ q) =
loopn_succ_in A (succ n) p ⬝ loopn_succ_in A (succ n) q :=
!loop_pequiv_loop_con
definition loopn_loop_irrel (p : point A = point A) : Ω(pointed.Mk p) = Ω[2] A :=
begin
intros, fapply pType_eq,
{ esimp, transitivity _,
apply eq_equiv_fn_eq_of_equiv (equiv_eq_closed_right _ p⁻¹),
esimp, apply eq_equiv_eq_closed, apply con.right_inv, apply con.right_inv},
{ esimp, apply con.left_inv}
end
definition loopn_space_loop_irrel (n : ) (p : point A = point A)
: Ω[succ n](pointed.Mk p) = Ω[succ (succ n)] A :> pType :=
calc
Ω[succ n](pointed.Mk p) = Ω[n](Ω (pointed.Mk p)) : eq_of_pequiv !loopn_succ_in
... = Ω[n] (Ω[2] A) : loopn_loop_irrel
... = Ω[2+n] A : eq_of_pequiv !loopn_add
... = Ω[n+2] A : by rewrite [algebra.add.comm]
definition apn_succ_phomotopy_in (n : ) (f : A →* B) :
loopn_succ_in B n ∘* Ω→[n + 1] f ~* Ω→[n] (Ω→ f) ∘* loopn_succ_in A n :=
begin
induction n with n IH,
{ reflexivity},
{ exact !ap1_pcompose⁻¹* ⬝* ap1_phomotopy IH ⬝* !ap1_pcompose}
end
definition loopn_succ_in_natural {A B : Type*} (n : ) (f : A →* B) :
loopn_succ_in B n ∘* Ω→[n+1] f ~* Ω→[n] (Ω→ f) ∘* loopn_succ_in A n :=
!apn_succ_phomotopy_in
definition loopn_succ_in_inv_natural {A B : Type*} (n : ) (f : A →* B) :
Ω→[n + 1] f ∘* (loopn_succ_in A n)⁻¹ᵉ* ~* (loopn_succ_in B n)⁻¹ᵉ* ∘* Ω→[n] (Ω→ f):=
begin
apply pinv_right_phomotopy_of_phomotopy,
refine _ ⬝* !passoc⁻¹*,
apply phomotopy_pinv_left_of_phomotopy,
apply apn_succ_phomotopy_in
end
/- properties of ppmap, the pointed type of pointed maps -/
definition ppcompose_left [constructor] (g : B →* C) : ppmap A B →* ppmap A C :=
pmap.mk (pcompose g) (eq_of_phomotopy (phomotopy.mk (λa, respect_pt g) (idp_con _)⁻¹))
definition is_pequiv_ppcompose_left [instance] [constructor] (g : B →* C) [H : is_equiv g] :
is_equiv (@ppcompose_left A B C g) :=
begin
fapply is_equiv.adjointify,
{ exact (ppcompose_left (pequiv_of_pmap g H)⁻¹ᵉ*) },
all_goals (intros f; esimp; apply eq_of_phomotopy),
{ exact calc g ∘* ((pequiv_of_pmap g H)⁻¹ᵉ* ∘* f)
~* (g ∘* (pequiv_of_pmap g H)⁻¹ᵉ*) ∘* f : passoc
... ~* pid _ ∘* f : pwhisker_right f (pright_inv (pequiv_of_pmap g H))
... ~* f : pid_pcompose f },
{ exact calc (pequiv_of_pmap g H)⁻¹ᵉ* ∘* (g ∘* f)
~* ((pequiv_of_pmap g H)⁻¹ᵉ* ∘* g) ∘* f : passoc
... ~* pid _ ∘* f : pwhisker_right f (pleft_inv (pequiv_of_pmap g H))
... ~* f : pid_pcompose f }
end
definition pequiv_ppcompose_left [constructor] (g : B ≃* C) : ppmap A B ≃* ppmap A C :=
pequiv_of_pmap (ppcompose_left g) _
definition pcompose_pconst [constructor] (f : B →* C) : f ∘* pconst A B ~* pconst A C :=
phomotopy.mk (λa, respect_pt f) (idp_con _)⁻¹
definition pconst_pcompose [constructor] (f : A →* B) : pconst B C ∘* f ~* pconst A C :=
phomotopy.mk (λa, rfl) (ap_constant _ _)⁻¹
definition ppcompose_right [constructor] (f : A →* B) : ppmap B C →* ppmap A C :=
begin
fconstructor,
{ intro g, exact g ∘* f },
{ apply eq_of_phomotopy, esimp, apply pconst_pcompose }
end
definition pequiv_ppcompose_right [constructor] (f : A ≃* B) : ppmap B C ≃* ppmap A C :=
begin
fapply pequiv.MK,
{ exact ppcompose_right f },
{ exact ppcompose_right f⁻¹ᵉ* },
{ intro g, apply eq_of_phomotopy, refine !passoc ⬝* _,
refine pwhisker_left g !pright_inv ⬝* !pcompose_pid, },
{ intro g, apply eq_of_phomotopy, refine !passoc ⬝* _,
refine pwhisker_left g !pleft_inv ⬝* !pcompose_pid, },
end
definition loop_pmap_commute (A B : Type*) : Ω(ppmap A B) ≃* (ppmap A (Ω B)) :=
pequiv_of_equiv
(calc Ω(ppmap A B) ≃ (pconst A B ~* pconst A B) : pmap_eq_equiv _ _
... ≃ Σ(p : pconst A B ~ pconst A B), p pt ⬝ rfl = rfl : phomotopy.sigma_char
... ≃ (A →* Ω B) : pmap.sigma_char)
(by reflexivity)
definition papply [constructor] {A : Type*} (B : Type*) (a : A) : ppmap A B →* B :=
pmap.mk (λ(f : A →* B), f a) idp
definition papply_pcompose [constructor] {A : Type*} (B : Type*) (a : A) : ppmap A B →* B :=
pmap.mk (λ(f : A →* B), f a) idp
definition pmap_pbool_pequiv [constructor] (B : Type*) : ppmap pbool B ≃* B :=
begin
fapply pequiv.MK,
{ exact papply B tt },
{ exact pbool_pmap },
{ intro f, fapply pmap_eq,
{ intro b, cases b, exact !respect_pt⁻¹, reflexivity },
{ exact !con.left_inv⁻¹ }},
{ intro b, reflexivity },
end
definition papn_pt [constructor] (n : ) (A B : Type*) : ppmap A B →* ppmap (Ω[n] A) (Ω[n] B) :=
pmap.mk (λf, apn n f) (eq_of_phomotopy !apn_pconst)
definition papn_fun [constructor] {n : } {A : Type*} (B : Type*) (p : Ω[n] A) :
ppmap A B →* Ω[n] B :=
papply _ p ∘* papn_pt n A B
end pointed