lean2/hott/init/equiv.hlean

281 lines
12 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: init.equiv
Author: Jeremy Avigad, Jakob von Raumer
Ported from Coq HoTT
-/
2014-12-12 18:17:50 +00:00
prelude
import .path .function
open eq function
2014-12-12 04:14:53 +00:00
/- Equivalences -/
2014-12-12 04:14:53 +00:00
-- This is our definition of equivalence. In the HoTT-book it's called
-- ihae (half-adjoint equivalence).
structure is_equiv [class] {A B : Type} (f : A → B) :=
mk' ::
2014-12-12 04:14:53 +00:00
(inv : B → A)
(right_inv : (f ∘ inv) id)
(left_inv : (inv ∘ f) id)
(adj : Πx, right_inv (f x) = ap f (left_inv x))
2014-12-12 04:14:53 +00:00
attribute is_equiv.inv [quasireducible]
2014-12-12 04:14:53 +00:00
-- A more bundled version of equivalence
2014-12-12 04:14:53 +00:00
structure equiv (A B : Type) :=
(to_fun : A → B)
(to_is_equiv : is_equiv to_fun)
namespace is_equiv
/- Some instances and closure properties of equivalences -/
2014-12-12 04:14:53 +00:00
postfix `⁻¹` := inv
/- a second notation for the inverse, which is not overloaded -/
postfix [parsing-only] `⁻¹ᵉ`:std.prec.max_plus := inv
2014-12-12 04:14:53 +00:00
section
2014-12-12 04:14:53 +00:00
variables {A B C : Type} (f : A → B) (g : B → C) {f' : A → B}
-- The variant of mk' where f is explicit.
protected abbreviation mk := @is_equiv.mk' A B f
2014-12-12 04:14:53 +00:00
-- The identity function is an equivalence.
definition is_equiv_id (A : Type) : (@is_equiv A A id) :=
is_equiv.mk id id (λa, idp) (λa, idp) (λa, idp)
2014-12-12 04:14:53 +00:00
-- The composition of two equivalences is, again, an equivalence.
2015-03-03 21:37:38 +00:00
definition is_equiv_compose [Hf : is_equiv f] [Hg : is_equiv g] : is_equiv (g ∘ f) :=
is_equiv.mk (g ∘ f) (f⁻¹ ∘ g⁻¹)
(λc, ap g (right_inv f (g⁻¹ c)) ⬝ right_inv g c)
(λa, ap (inv f) (left_inv g (f a)) ⬝ left_inv f a)
(λa, (whisker_left _ (adj g (f a))) ⬝
(ap_con g _ _)⁻¹ ⬝
ap02 g ((ap_con_eq_con (right_inv f) (left_inv g (f a)))⁻¹ ⬝
2014-12-12 04:14:53 +00:00
(ap_compose (inv f) f _ ◾ adj f a) ⬝
(ap_con f _ _)⁻¹
2014-12-12 04:14:53 +00:00
) ⬝
(ap_compose f g _)⁻¹
)
-- Any function equal to an equivalence is an equivlance as well.
definition is_equiv_eq_closed [Hf : is_equiv f] (Heq : f = f') : (is_equiv f') :=
2014-12-12 18:17:50 +00:00
eq.rec_on Heq Hf
2014-12-12 04:14:53 +00:00
-- Any function pointwise equal to an equivalence is an equivalence as well.
definition homotopy_closed [Hf : is_equiv f] (Hty : f f') : (is_equiv f') :=
let sect' := (λ b, (Hty (inv f b))⁻¹ ⬝ right_inv f b) in
let retr' := (λ a, (ap (inv f) (Hty a))⁻¹ ⬝ left_inv f a) in
2014-12-12 04:14:53 +00:00
let adj' := (λ (a : A),
let ff'a := Hty a in
let invf := inv f in
let secta := left_inv f a in
let retrfa := right_inv f (f a) in
let retrf'a := right_inv f (f' a) in
2014-12-12 18:17:50 +00:00
have eq1 : _ = _,
2014-12-12 04:14:53 +00:00
from calc ap f secta ⬝ ff'a
= retrfa ⬝ ff'a : by rewrite adj
... = ap (f ∘ invf) ff'a ⬝ retrf'a : by rewrite ap_con_eq_con
... = ap f (ap invf ff'a) ⬝ retrf'a : by rewrite ap_compose,
2014-12-12 18:17:50 +00:00
have eq2 : _ = _,
2014-12-12 04:14:53 +00:00
from calc retrf'a
= (ap f (ap invf ff'a))⁻¹ ⬝ (ap f secta ⬝ ff'a) : eq_inv_con_of_con_eq eq1⁻¹
... = (ap f (ap invf ff'a))⁻¹ ⬝ (ap f secta ⬝ Hty a) : ap_inv invf ff'a
... = (ap f (ap invf ff'a))⁻¹ ⬝ (Hty (invf (f a)) ⬝ ap f' secta) : by rewrite ap_con_eq_con_ap
... = ((ap f (ap invf ff'a))⁻¹ ⬝ Hty (invf (f a))) ⬝ ap f' secta : by rewrite con.assoc
... = (ap f (ap invf ff'a)⁻¹ ⬝ Hty (invf (f a))) ⬝ ap f' secta : by rewrite ap_inv
... = (Hty (invf (f' a)) ⬝ ap f' (ap invf ff'a)⁻¹) ⬝ ap f' secta : by rewrite ap_con_eq_con_ap
... = (Hty (invf (f' a)) ⬝ (ap f' (ap invf ff'a))⁻¹) ⬝ ap f' secta : by rewrite ap_inv
... = Hty (invf (f' a)) ⬝ ((ap f' (ap invf ff'a))⁻¹ ⬝ ap f' secta) : by rewrite con.assoc,
2014-12-12 18:17:50 +00:00
have eq3 : _ = _,
2014-12-12 04:14:53 +00:00
from calc (Hty (invf (f' a)))⁻¹ ⬝ retrf'a
= (ap f' (ap invf ff'a))⁻¹ ⬝ ap f' secta : inv_con_eq_of_eq_con eq2
... = (ap f' (ap invf ff'a)⁻¹) ⬝ ap f' secta : by rewrite ap_inv
... = ap f' ((ap invf ff'a)⁻¹ ⬝ secta) : by rewrite ap_con,
2014-12-12 04:14:53 +00:00
eq3) in
is_equiv.mk f' (inv f) sect' retr' adj'
end
2014-12-12 04:14:53 +00:00
section
2014-12-12 04:14:53 +00:00
parameters {A B : Type} (f : A → B) (g : B → A)
(ret : f ∘ g id) (sec : g ∘ f id)
private definition adjointify_sect' : g ∘ f id :=
2014-12-12 04:14:53 +00:00
(λx, ap g (ap f (inverse (sec x))) ⬝ ap g (ret (f x)) ⬝ sec x)
private definition adjointify_adj' : Π (x : A), ret (f x) = ap f (adjointify_sect' x) :=
2014-12-12 04:14:53 +00:00
(λ (a : A),
let fgretrfa := ap f (ap g (ret (f a))) in
let fgfinvsect := ap f (ap g (ap f (sec a)⁻¹)) in
2014-12-12 04:14:53 +00:00
let fgfa := f (g (f a)) in
let retrfa := ret (f a) in
2014-12-12 18:17:50 +00:00
have eq1 : ap f (sec a) = _,
2014-12-12 04:14:53 +00:00
from calc ap f (sec a)
= idp ⬝ ap f (sec a) : by rewrite idp_con
... = (ret (f a) ⬝ (ret (f a))⁻¹) ⬝ ap f (sec a) : by rewrite con.right_inv
... = ((ret fgfa)⁻¹ ⬝ ap (f ∘ g) (ret (f a))) ⬝ ap f (sec a) : by rewrite con_ap_eq_con
... = ((ret fgfa)⁻¹ ⬝ fgretrfa) ⬝ ap f (sec a) : by rewrite ap_compose
... = (ret fgfa)⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a)) : by rewrite con.assoc,
2014-12-12 18:17:50 +00:00
have eq2 : ap f (sec a) ⬝ idp = (ret fgfa)⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a)),
from !con_idp ⬝ eq1,
2014-12-12 18:17:50 +00:00
have eq3 : idp = _,
2014-12-12 04:14:53 +00:00
from calc idp
= (ap f (sec a))⁻¹ ⬝ ((ret fgfa)⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a))) : eq_inv_con_of_con_eq eq2
... = ((ap f (sec a))⁻¹ ⬝ (ret fgfa)⁻¹) ⬝ (fgretrfa ⬝ ap f (sec a)) : by rewrite con.assoc'
... = (ap f (sec a)⁻¹ ⬝ (ret fgfa)⁻¹) ⬝ (fgretrfa ⬝ ap f (sec a)) : by rewrite ap_inv
... = ((ap f (sec a)⁻¹ ⬝ (ret fgfa)⁻¹) ⬝ fgretrfa) ⬝ ap f (sec a) : by rewrite con.assoc'
... = ((retrfa⁻¹ ⬝ ap (f ∘ g) (ap f (sec a)⁻¹)) ⬝ fgretrfa) ⬝ ap f (sec a) : by rewrite con_ap_eq_con
... = ((retrfa⁻¹ ⬝ fgfinvsect) ⬝ fgretrfa) ⬝ ap f (sec a) : by rewrite ap_compose
... = (retrfa⁻¹ ⬝ (fgfinvsect ⬝ fgretrfa)) ⬝ ap f (sec a) : by rewrite con.assoc'
... = retrfa⁻¹ ⬝ ap f (ap g (ap f (sec a)⁻¹) ⬝ ap g (ret (f a))) ⬝ ap f (sec a) : by rewrite ap_con
... = retrfa⁻¹ ⬝ (ap f (ap g (ap f (sec a)⁻¹) ⬝ ap g (ret (f a))) ⬝ ap f (sec a)) : by rewrite con.assoc'
... = retrfa⁻¹ ⬝ ap f ((ap g (ap f (sec a)⁻¹) ⬝ ap g (ret (f a))) ⬝ sec a) : by rewrite -ap_con,
have eq4 : ret (f a) = ap f ((ap g (ap f (sec a)⁻¹) ⬝ ap g (ret (f a))) ⬝ sec a),
from eq_of_idp_eq_inv_con eq3,
2014-12-12 04:14:53 +00:00
eq4)
definition adjointify : is_equiv f := is_equiv.mk f g ret adjointify_sect' adjointify_adj'
2014-12-12 04:14:53 +00:00
end
section
variables {A B C : Type} (f : A → B) {f' : A → B} [Hf : is_equiv f] (g : B → C)
2014-12-12 04:14:53 +00:00
include Hf
--The inverse of an equivalence is, again, an equivalence.
definition is_equiv_inv [instance] : (is_equiv f⁻¹) :=
adjointify f⁻¹ f (left_inv f) (right_inv f)
definition cancel_right (g : B → C) [Hgf : is_equiv (g ∘ f)] : (is_equiv g) :=
have Hfinv [visible] : is_equiv f⁻¹, from is_equiv_inv f,
@homotopy_closed _ _ _ _ (is_equiv_compose f⁻¹ (g ∘ f)) (λb, ap g (@right_inv _ _ f _ b))
2014-12-12 04:14:53 +00:00
definition cancel_left (g : C → A) [Hgf : is_equiv (f ∘ g)] : (is_equiv g) :=
have Hfinv [visible] : is_equiv f⁻¹, from is_equiv_inv f,
@homotopy_closed _ _ _ _ (is_equiv_compose (f ∘ g) f⁻¹) (λa, left_inv f (g a))
2014-12-12 04:14:53 +00:00
definition is_equiv_ap [instance] (x y : A) : is_equiv (ap f) :=
2014-12-12 04:14:53 +00:00
adjointify (ap f)
(λq, (inverse (left_inv f x)) ⬝ ap f⁻¹ q ⬝ left_inv f y)
(λq, !ap_con
⬝ whisker_right !ap_con _
⬝ ((!ap_inv ⬝ inverse2 (adj f _)⁻¹)
◾ (inverse (ap_compose f⁻¹ f _))
2014-12-12 04:14:53 +00:00
◾ (adj f _)⁻¹)
⬝ con_ap_con_eq_con_con (right_inv f) _ _
⬝ whisker_right !con.left_inv _
⬝ !idp_con)
(λp, whisker_right (whisker_left _ (ap_compose f f⁻¹ _)⁻¹) _
⬝ con_ap_con_eq_con_con (left_inv f) _ _
⬝ whisker_right !con.left_inv _
⬝ !idp_con)
2014-12-12 04:14:53 +00:00
-- The function equiv_rect says that given an equivalence f : A → B,
-- and a hypothesis from B, one may always assume that the hypothesis
-- is in the image of e.
-- In fibrational terms, if we have a fibration over B which has a section
-- once pulled back along an equivalence f : A → B, then it has a section
-- over all of B.
definition equiv_rect (P : B → Type) :
2014-12-12 04:14:53 +00:00
(Πx, P (f x)) → (Πy, P y) :=
(λg y, eq.transport _ (right_inv f y) (g (f⁻¹ y)))
2014-12-12 04:14:53 +00:00
definition equiv_rect_comp (P : B → Type)
2014-12-12 18:17:50 +00:00
(df : Π (x : A), P (f x)) (x : A) : equiv_rect f P df (f x) = df x :=
2014-12-12 04:14:53 +00:00
calc equiv_rect f P df (f x)
= transport P (right_inv f (f x)) (df (f⁻¹ (f x))) : by esimp
... = transport P (eq.ap f (left_inv f x)) (df (f⁻¹ (f x))) : by rewrite adj
... = transport (P ∘ f) (left_inv f x) (df (f⁻¹ (f x))) : by rewrite -transport_compose
... = df x : by rewrite (apd df (left_inv f x))
2014-12-12 04:14:53 +00:00
end
section
variables {A B : Type} {f : A → B} [Hf : is_equiv f] {a : A} {b : B}
include Hf
--Rewrite rules
definition eq_of_eq_inv (p : a = f⁻¹ b) : f a = b :=
ap f p ⬝ right_inv f b
definition eq_of_inv_eq (p : f⁻¹ b = a) : b = f a :=
(eq_of_eq_inv p⁻¹)⁻¹
definition inv_eq_of_eq (p : b = f a) : f⁻¹ b = a :=
ap f⁻¹ p ⬝ left_inv f a
definition eq_inv_of_eq (p : f a = b) : a = f⁻¹ b :=
(inv_eq_of_eq p⁻¹)⁻¹
end
2014-12-12 04:14:53 +00:00
--Transporting is an equivalence
definition is_equiv_tr [instance] {A : Type} (P : A → Type) {x y : A} (p : x = y) : (is_equiv (transport P p)) :=
is_equiv.mk _ (transport P p⁻¹) (tr_inv_tr P p) (inv_tr_tr P p) (tr_inv_tr_lemma P p)
2014-12-12 04:14:53 +00:00
end is_equiv
open is_equiv
2014-12-12 04:14:53 +00:00
namespace equiv
namespace ops
attribute to_fun [coercion]
end ops
open equiv.ops
attribute to_is_equiv [instance]
2014-12-12 04:14:53 +00:00
infix `≃`:25 := equiv
variables {A B C : Type}
2014-12-12 04:14:53 +00:00
protected definition MK [reducible] (f : A → B) (g : B → A)
(right_inv : f ∘ g id) (left_inv : g ∘ f id) : A ≃ B :=
equiv.mk f (adjointify f g right_inv left_inv)
definition to_inv [reducible] (f : A ≃ B) : B → A := f⁻¹
definition to_right_inv [reducible] (f : A ≃ B) : f ∘ f⁻¹ id := right_inv f
definition to_left_inv [reducible] (f : A ≃ B) : f⁻¹ ∘ f id := left_inv f
2014-12-12 04:14:53 +00:00
protected definition refl : A ≃ A :=
equiv.mk id !is_equiv_id
2014-12-12 04:14:53 +00:00
protected definition symm (f : A ≃ B) : B ≃ A :=
equiv.mk f⁻¹ !is_equiv_inv
2014-12-12 04:14:53 +00:00
protected definition trans (f : A ≃ B) (g: B ≃ C) : A ≃ C :=
equiv.mk (g ∘ f) !is_equiv_compose
2014-12-12 04:14:53 +00:00
2015-03-03 21:37:38 +00:00
definition equiv_of_eq_fn_of_equiv (f : A ≃ B) (f' : A → B) (Heq : f = f') : A ≃ B :=
equiv.mk f' (is_equiv_eq_closed f Heq)
2014-12-12 04:14:53 +00:00
definition eq_equiv_fn_eq (f : A → B) [H : is_equiv f] (a b : A) : (a = b) ≃ (f a = f b) :=
equiv.mk (ap f) !is_equiv_ap
2014-12-12 04:14:53 +00:00
definition eq_equiv_fn_eq_of_equiv (f : A ≃ B) (a b : A) : (a = b) ≃ (f a = f b) :=
equiv.mk (ap f) !is_equiv_ap
definition equiv_ap (P : A → Type) {a b : A} (p : a = b) : (P a) ≃ (P b) :=
equiv.mk (transport P p) !is_equiv_tr
2014-12-12 04:14:53 +00:00
--we need this theorem for the funext_of_ua proof
theorem inv_eq {A B : Type} (eqf eqg : A ≃ B) (p : eqf = eqg) : (to_fun eqf)⁻¹ = (to_fun eqg)⁻¹ :=
eq.rec_on p idp
2014-12-12 04:14:53 +00:00
-- calc enviroment
-- Note: Calculating with substitutions needs univalence
2015-03-03 21:37:38 +00:00
definition equiv_of_equiv_of_eq {A B C : Type} (p : A = B) (q : B ≃ C) : A ≃ C := p⁻¹ ▹ q
definition equiv_of_eq_of_equiv {A B C : Type} (p : A ≃ B) (q : B = C) : A ≃ C := q ▹ p
calc_trans equiv.trans
calc_refl equiv.refl
calc_symm equiv.symm
2015-03-03 21:37:38 +00:00
calc_trans equiv_of_equiv_of_eq
calc_trans equiv_of_eq_of_equiv
2014-12-12 04:14:53 +00:00
end equiv