lean2/library/logic/axioms/examples/diaconescu.lean

52 lines
1.7 KiB
Text
Raw Normal View History

-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
import logic.axioms.hilbert logic.eq
open eq.ops nonempty inhabited
-- Diaconescus theorem
-- Show that Excluded middle follows from
-- Hilbert's choice operator, function extensionality and Prop extensionality
section
parameter p : Prop
private definition u [reducible] := epsilon (λx, x = true p)
private definition v [reducible] := epsilon (λx, x = false p)
private lemma u_def : u = true p :=
epsilon_spec (exists.intro true (or.inl rfl))
private lemma v_def : v = false p :=
epsilon_spec (exists.intro false (or.inl rfl))
private lemma uv_implies_p : ¬(u = v) p :=
or.elim u_def
(assume Hut : u = true, or.elim v_def
(assume Hvf : v = false,
have Hne : ¬(u = v), from Hvf⁻¹ ▸ Hut⁻¹ ▸ true_ne_false,
or.inl Hne)
(assume Hp : p, or.inr Hp))
(assume Hp : p, or.inr Hp)
private lemma p_implies_uv : p → u = v :=
assume Hp : p,
have Hpred : (λ x, x = true p) = (λ x, x = false p), from
funext (take x : Prop,
have Hl : (x = true p) → (x = false p), from
assume A, or.inr Hp,
have Hr : (x = false p) → (x = true p), from
assume A, or.inr Hp,
show (x = true p) = (x = false p), from
propext (iff.intro Hl Hr)),
show u = v, from
Hpred ▸ (eq.refl (epsilon (λ x, x = true p)))
theorem em : p ¬p :=
have H : ¬(u = v) → ¬p, from mt p_implies_uv,
or.elim uv_implies_p
(assume Hne : ¬(u = v), or.inr (H Hne))
(assume Hp : p, or.inl Hp)
end