lean2/library/data/nat/div.lean

617 lines
25 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura
Definitions and properties of div and mod. Much of the development follows Isabelle's library.
-/
import data.nat.sub
open eq.ops well_founded decidable prod
namespace nat
/- div -/
-- auxiliary lemma used to justify div
private definition div_rec_lemma {x y : nat} : 0 < y ∧ y ≤ x → x - y < x :=
and.rec (λ ypos ylex, sub_lt (lt_of_lt_of_le ypos ylex) ypos)
private definition div.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat :=
if H : 0 < y ∧ y ≤ x then f (x - y) (div_rec_lemma H) y + 1 else zero
protected definition div := fix div.F
definition nat_has_divide [instance] [priority nat.prio] : has_div nat :=
has_div.mk nat.div
theorem div_def (x y : nat) : div x y = if 0 < y ∧ y ≤ x then div (x - y) y + 1 else 0 :=
congr_fun (fix_eq div.F x) y
protected theorem div_zero [simp] (a : ) : a / 0 = 0 :=
div_def a 0 ⬝ if_neg (!not_and_of_not_left (lt.irrefl 0))
theorem div_eq_zero_of_lt {a b : } (h : a < b) : a / b = 0 :=
div_def a b ⬝ if_neg (!not_and_of_not_right (not_le_of_gt h))
protected theorem zero_div [simp] (b : ) : 0 / b = 0 :=
div_def 0 b ⬝ if_neg (and.rec not_le_of_gt)
theorem div_eq_succ_sub_div {a b : } (h₁ : b > 0) (h₂ : a ≥ b) : a / b = succ ((a - b) / b) :=
div_def a b ⬝ if_pos (and.intro h₁ h₂)
theorem add_div_self (x : ) {z : } (H : z > 0) : (x + z) / z = succ (x / z) :=
calc
(x + z) / z = if 0 < z ∧ z ≤ x + z then (x + z - z) / z + 1 else 0 : !div_def
... = (x + z - z) / z + 1 : if_pos (and.intro H (le_add_left z x))
... = succ (x / z) : {!nat.add_sub_cancel}
theorem add_div_self_left {x : } (z : ) (H : x > 0) : (x + z) / x = succ (z / x) :=
!add.comm ▸ !add_div_self H
local attribute succ_mul [simp]
theorem add_mul_div_self {x y z : } (H : z > 0) : (x + y * z) / z = x / z + y :=
nat.induction_on y
(by simp)
(take y,
assume IH : (x + y * z) / z = x / z + y, calc
(x + succ y * z) / z = (x + y * z + z) / z : by inst_simp
... = succ ((x + y * z) / z) : !add_div_self H
... = succ (x / z + y) : IH)
theorem add_mul_div_self_left (x z : ) {y : } (H : y > 0) : (x + y * z) / y = x / y + z :=
!mul.comm ▸ add_mul_div_self H
protected theorem mul_div_cancel (m : ) {n : } (H : n > 0) : m * n / n = m :=
calc
m * n / n = (0 + m * n) / n : by simp
... = 0 / n + m : add_mul_div_self H
... = m : by simp
protected theorem mul_div_cancel_left {m : } (n : ) (H : m > 0) : m * n / m = n :=
!mul.comm ▸ !nat.mul_div_cancel H
/- mod -/
private definition mod.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat :=
if H : 0 < y ∧ y ≤ x then f (x - y) (div_rec_lemma H) y else x
protected definition mod := fix mod.F
definition nat_has_mod [instance] [priority nat.prio] : has_mod nat :=
has_mod.mk nat.mod
notation [priority nat.prio] a ≡ b `[mod `:0 c:0 `]` := a % c = b % c
theorem mod_def (x y : nat) : mod x y = if 0 < y ∧ y ≤ x then mod (x - y) y else x :=
congr_fun (fix_eq mod.F x) y
theorem mod_zero [simp] (a : ) : a % 0 = a :=
mod_def a 0 ⬝ if_neg (!not_and_of_not_left (lt.irrefl 0))
theorem mod_eq_of_lt {a b : } (h : a < b) : a % b = a :=
mod_def a b ⬝ if_neg (!not_and_of_not_right (not_le_of_gt h))
theorem zero_mod [simp] (b : ) : 0 % b = 0 :=
mod_def 0 b ⬝ if_neg (λ h, and.rec_on h (λ l r, absurd (lt_of_lt_of_le l r) (lt.irrefl 0)))
theorem mod_eq_sub_mod {a b : } (h₁ : b > 0) (h₂ : a ≥ b) : a % b = (a - b) % b :=
mod_def a b ⬝ if_pos (and.intro h₁ h₂)
theorem add_mod_self [simp] (x z : ) : (x + z) % z = x % z :=
by_cases_zero_pos z
(by rewrite add_zero)
(take z, assume H : z > 0,
calc
(x + z) % z = if 0 < z ∧ z ≤ x + z then (x + z - z) % z else _ : mod_def
... = (x + z - z) % z : if_pos (and.intro H (le_add_left z x))
... = x % z : nat.add_sub_cancel)
theorem add_mod_self_left [simp] (x z : ) : (x + z) % x = z % x :=
!add.comm ▸ !add_mod_self
local attribute succ_mul [simp]
theorem add_mul_mod_self [simp] (x y z : ) : (x + y * z) % z = x % z :=
nat.induction_on y (by simp) (by inst_simp)
theorem add_mul_mod_self_left [simp] (x y z : ) : (x + y * z) % y = x % y :=
by inst_simp
theorem mul_mod_left [simp] (m n : ) : (m * n) % n = 0 :=
calc (m * n) % n = (0 + m * n) % n : by simp
... = 0 : by inst_simp
theorem mul_mod_right [simp] (m n : ) : (m * n) % m = 0 :=
by inst_simp
theorem mod_lt (x : ) {y : } (H : y > 0) : x % y < y :=
nat.case_strong_induction_on x
(show 0 % y < y, from !zero_mod⁻¹ ▸ H)
(take x,
assume IH : ∀x', x' ≤ x → x' % y < y,
show succ x % y < y, from
by_cases -- (succ x < y)
(assume H1 : succ x < y,
have succ x % y = succ x, from mod_eq_of_lt H1,
show succ x % y < y, from this⁻¹ ▸ H1)
(assume H1 : ¬ succ x < y,
have y ≤ succ x, from le_of_not_gt H1,
have h : succ x % y = (succ x - y) % y, from mod_eq_sub_mod H this,
have succ x - y < succ x, from sub_lt !succ_pos H,
have succ x - y ≤ x, from le_of_lt_succ this,
show succ x % y < y, from h⁻¹ ▸ IH _ this))
theorem mod_one (n : ) : n % 1 = 0 :=
have H1 : n % 1 < 1, from !mod_lt !succ_pos,
eq_zero_of_le_zero (le_of_lt_succ H1)
/- properties of div and mod -/
-- the quotient - remainder theorem
theorem eq_div_mul_add_mod (x y : ) : x = x / y * y + x % y :=
begin
eapply by_cases_zero_pos y,
show x = x / 0 * 0 + x % 0, from
(calc
x / 0 * 0 + x % 0 = 0 + x % 0 : mul_zero
... = x % 0 : zero_add
... = x : mod_zero)⁻¹,
intro y H,
show x = x / y * y + x % y,
begin
eapply nat.case_strong_induction_on x,
show 0 = (0 / y) * y + 0 % y, by rewrite [zero_mod, add_zero, nat.zero_div, zero_mul],
intro x IH,
show succ x = succ x / y * y + succ x % y, from
if H1 : succ x < y then
assert H2 : succ x / y = 0, from div_eq_zero_of_lt H1,
assert H3 : succ x % y = succ x, from mod_eq_of_lt H1,
begin rewrite [H2, H3, zero_mul, zero_add] end
else
have H2 : y ≤ succ x, from le_of_not_gt H1,
assert H3 : succ x / y = succ ((succ x - y) / y), from div_eq_succ_sub_div H H2,
assert H4 : succ x % y = (succ x - y) % y, from mod_eq_sub_mod H H2,
have H5 : succ x - y < succ x, from sub_lt !succ_pos H,
assert H6 : succ x - y ≤ x, from le_of_lt_succ H5,
(calc
succ x / y * y + succ x % y =
succ ((succ x - y) / y) * y + succ x % y : by rewrite H3
... = ((succ x - y) / y) * y + y + succ x % y : by rewrite succ_mul
... = ((succ x - y) / y) * y + y + (succ x - y) % y : by rewrite H4
... = ((succ x - y) / y) * y + (succ x - y) % y + y : add.right_comm
... = succ x - y + y : by rewrite -(IH _ H6)
... = succ x : nat.sub_add_cancel H2)⁻¹
end
end
theorem mod_eq_sub_div_mul (x y : ) : x % y = x - x / y * y :=
nat.eq_sub_of_add_eq (!add.comm ▸ !eq_div_mul_add_mod)⁻¹
theorem mod_add_mod (m n k : ) : (m % n + k) % n = (m + k) % n :=
by rewrite [eq_div_mul_add_mod m n at {2}, add.assoc, add.comm (m / n * n), add_mul_mod_self]
theorem add_mod_mod (m n k : ) : (m + n % k) % k = (m + n) % k :=
by rewrite [add.comm, mod_add_mod, add.comm]
theorem add_mod_eq_add_mod_right {m n k : } (i : ) (H : m % n = k % n) :
(m + i) % n = (k + i) % n :=
by rewrite [-mod_add_mod, -mod_add_mod k, H]
theorem add_mod_eq_add_mod_left {m n k : } (i : ) (H : m % n = k % n) :
(i + m) % n = (i + k) % n :=
by rewrite [add.comm, add_mod_eq_add_mod_right _ H, add.comm]
theorem mod_eq_mod_of_add_mod_eq_add_mod_right {m n k i : } :
(m + i) % n = (k + i) % n → m % n = k % n :=
by_cases_zero_pos n
(by rewrite [*mod_zero]; apply eq_of_add_eq_add_right)
(take n,
assume npos : n > 0,
assume H1 : (m + i) % n = (k + i) % n,
have H2 : (m + i % n) % n = (k + i % n) % n, by rewrite [*add_mod_mod, H1],
assert H3 : (m + i % n + (n - i % n)) % n = (k + i % n + (n - i % n)) % n,
from add_mod_eq_add_mod_right _ H2,
begin
revert H3,
rewrite [*add.assoc, add_sub_of_le (le_of_lt (!mod_lt npos)), *add_mod_self],
intros, assumption
end)
theorem mod_eq_mod_of_add_mod_eq_add_mod_left {m n k i : } :
(i + m) % n = (i + k) % n → m % n = k % n :=
by rewrite [add.comm i m, add.comm i k]; apply mod_eq_mod_of_add_mod_eq_add_mod_right
theorem mod_le {x y : } : x % y ≤ x :=
!eq_div_mul_add_mod⁻¹ ▸ !le_add_left
theorem eq_remainder {q1 r1 q2 r2 y : } (H1 : r1 < y) (H2 : r2 < y)
(H3 : q1 * y + r1 = q2 * y + r2) : r1 = r2 :=
calc
r1 = r1 % y : mod_eq_of_lt H1
... = (r1 + q1 * y) % y : !add_mul_mod_self⁻¹
... = (q1 * y + r1) % y : add.comm
... = (r2 + q2 * y) % y : by rewrite [H3, add.comm]
... = r2 % y : !add_mul_mod_self
... = r2 : mod_eq_of_lt H2
theorem eq_quotient {q1 r1 q2 r2 y : } (H1 : r1 < y) (H2 : r2 < y)
(H3 : q1 * y + r1 = q2 * y + r2) : q1 = q2 :=
have H4 : q1 * y + r2 = q2 * y + r2, from (eq_remainder H1 H2 H3) ▸ H3,
have H5 : q1 * y = q2 * y, from add.right_cancel H4,
have H6 : y > 0, from lt_of_le_of_lt !zero_le H1,
show q1 = q2, from eq_of_mul_eq_mul_right H6 H5
protected theorem mul_div_mul_left {z : } (x y : ) (zpos : z > 0) :
(z * x) / (z * y) = x / y :=
if H : y = 0 then
by rewrite [H, mul_zero, *nat.div_zero]
else
have ypos : y > 0, from pos_of_ne_zero H,
have zypos : z * y > 0, from mul_pos zpos ypos,
have H1 : (z * x) % (z * y) < z * y, from !mod_lt zypos,
have H2 : z * (x % y) < z * y, from mul_lt_mul_of_pos_left (!mod_lt ypos) zpos,
eq_quotient H1 H2
(calc
((z * x) / (z * y)) * (z * y) + (z * x) % (z * y) = z * x : eq_div_mul_add_mod
... = z * (x / y * y + x % y) : eq_div_mul_add_mod
... = z * (x / y * y) + z * (x % y) : left_distrib
... = (x / y) * (z * y) + z * (x % y) : mul.left_comm)
protected theorem mul_div_mul_right {x z y : } (zpos : z > 0) : (x * z) / (y * z) = x / y :=
!mul.comm ▸ !mul.comm ▸ !nat.mul_div_mul_left zpos
theorem mul_mod_mul_left (z x y : ) : (z * x) % (z * y) = z * (x % y) :=
or.elim (eq_zero_or_pos z)
(assume H : z = 0, H⁻¹ ▸ calc
(0 * x) % (z * y) = 0 % (z * y) : zero_mul
... = 0 : zero_mod
... = 0 * (x % y) : zero_mul)
(assume zpos : z > 0,
or.elim (eq_zero_or_pos y)
(assume H : y = 0, by rewrite [H, mul_zero, *mod_zero])
(assume ypos : y > 0,
have zypos : z * y > 0, from mul_pos zpos ypos,
have H1 : (z * x) % (z * y) < z * y, from !mod_lt zypos,
have H2 : z * (x % y) < z * y, from mul_lt_mul_of_pos_left (!mod_lt ypos) zpos,
eq_remainder H1 H2
(calc
((z * x) / (z * y)) * (z * y) + (z * x) % (z * y) = z * x : eq_div_mul_add_mod
... = z * (x / y * y + x % y) : eq_div_mul_add_mod
... = z * (x / y * y) + z * (x % y) : left_distrib
... = (x / y) * (z * y) + z * (x % y) : mul.left_comm)))
theorem mul_mod_mul_right (x z y : ) : (x * z) % (y * z) = (x % y) * z :=
mul.comm z x ▸ mul.comm z y ▸ !mul.comm ▸ !mul_mod_mul_left
theorem mod_self (n : ) : n % n = 0 :=
nat.cases_on n (by rewrite zero_mod)
(take n, by rewrite [-zero_add (succ n) at {1}, add_mod_self])
theorem mul_mod_eq_mod_mul_mod (m n k : nat) : (m * n) % k = ((m % k) * n) % k :=
calc
(m * n) % k = (((m / k) * k + m % k) * n) % k : eq_div_mul_add_mod
... = ((m % k) * n) % k :
by rewrite [right_distrib, mul.right_comm, add.comm, add_mul_mod_self]
theorem mul_mod_eq_mul_mod_mod (m n k : nat) : (m * n) % k = (m * (n % k)) % k :=
!mul.comm ▸ !mul.comm ▸ !mul_mod_eq_mod_mul_mod
protected theorem div_one (n : ) : n / 1 = n :=
assert n / 1 * 1 + n % 1 = n, from !eq_div_mul_add_mod⁻¹,
2015-07-22 17:13:19 +00:00
begin rewrite [-this at {2}, mul_one, mod_one] end
protected theorem div_self {n : } (H : n > 0) : n / n = 1 :=
assert (n * 1) / (n * 1) = 1 / 1, from !nat.mul_div_mul_left H,
by rewrite [nat.div_one at this, -this, *mul_one]
theorem div_mul_cancel_of_mod_eq_zero {m n : } (H : m % n = 0) : m / n * n = m :=
by rewrite [eq_div_mul_add_mod m n at {2}, H, add_zero]
theorem mul_div_cancel_of_mod_eq_zero {m n : } (H : m % n = 0) : n * (m / n) = m :=
!mul.comm ▸ div_mul_cancel_of_mod_eq_zero H
/- dvd -/
theorem dvd_of_mod_eq_zero {m n : } (H : n % m = 0) : m n :=
dvd.intro (!mul.comm ▸ div_mul_cancel_of_mod_eq_zero H)
theorem mod_eq_zero_of_dvd {m n : } (H : m n) : n % m = 0 :=
dvd.elim H (take z, assume H1 : n = m * z, H1⁻¹ ▸ !mul_mod_right)
theorem dvd_iff_mod_eq_zero (m n : ) : m n ↔ n % m = 0 :=
iff.intro mod_eq_zero_of_dvd dvd_of_mod_eq_zero
definition dvd.decidable_rel [instance] : decidable_rel dvd :=
take m n, decidable_of_decidable_of_iff _ (iff.symm !dvd_iff_mod_eq_zero)
protected theorem div_mul_cancel {m n : } (H : n m) : m / n * n = m :=
div_mul_cancel_of_mod_eq_zero (mod_eq_zero_of_dvd H)
protected theorem mul_div_cancel' {m n : } (H : n m) : n * (m / n) = m :=
!mul.comm ▸ nat.div_mul_cancel H
theorem dvd_of_dvd_add_left {m n₁ n₂ : } (H₁ : m n₁ + n₂) (H₂ : m n₁) : m n₂ :=
obtain (c₁ : nat) (Hc₁ : n₁ + n₂ = m * c₁), from H₁,
obtain (c₂ : nat) (Hc₂ : n₁ = m * c₂), from H₂,
have aux : m * (c₁ - c₂) = n₂, from calc
m * (c₁ - c₂) = m * c₁ - m * c₂ : nat.mul_sub_left_distrib
... = n₁ + n₂ - m * c₂ : Hc₁
... = n₁ + n₂ - n₁ : Hc₂
... = n₂ : nat.add_sub_cancel_left,
dvd.intro aux
theorem dvd_of_dvd_add_right {m n₁ n₂ : } (H : m n₁ + n₂) : m n₂ → m n₁ :=
nat.dvd_of_dvd_add_left (!add.comm ▸ H)
theorem dvd_sub {m n₁ n₂ : } (H1 : m n₁) (H2 : m n₂) : m n₁ - n₂ :=
by_cases
(assume H3 : n₁ ≥ n₂,
have H4 : n₁ = n₁ - n₂ + n₂, from (nat.sub_add_cancel H3)⁻¹,
show m n₁ - n₂, from nat.dvd_of_dvd_add_right (H4 ▸ H1) H2)
(assume H3 : ¬ (n₁ ≥ n₂),
have H4 : n₁ - n₂ = 0, from sub_eq_zero_of_le (le_of_lt (lt_of_not_ge H3)),
show m n₁ - n₂, from H4⁻¹ ▸ dvd_zero _)
theorem dvd.antisymm {m n : } : m n → n m → m = n :=
by_cases_zero_pos n
(assume H1, assume H2 : 0 m, eq_zero_of_zero_dvd H2)
(take n,
assume Hpos : n > 0,
assume H1 : m n,
assume H2 : n m,
obtain k (Hk : n = m * k), from exists_eq_mul_right_of_dvd H1,
obtain l (Hl : m = n * l), from exists_eq_mul_right_of_dvd H2,
have n * (l * k) = n, from !mul.assoc ▸ Hl ▸ Hk⁻¹,
have l * k = 1, from eq_one_of_mul_eq_self_right Hpos this,
have k = 1, from eq_one_of_mul_eq_one_left this,
show m = n, from (mul_one m)⁻¹ ⬝ (this ▸ Hk⁻¹))
protected theorem mul_div_assoc (m : ) {n k : } (H : k n) : m * n / k = m * (n / k) :=
or.elim (eq_zero_or_pos k)
(assume H1 : k = 0,
calc
m * n / k = m * n / 0 : H1
... = 0 : nat.div_zero
... = m * 0 : mul_zero m
... = m * (n / 0) : nat.div_zero
... = m * (n / k) : H1)
(assume H1 : k > 0,
have H2 : n = n / k * k, from (nat.div_mul_cancel H)⁻¹,
calc
m * n / k = m * (n / k * k) / k : H2
... = m * (n / k) * k / k : mul.assoc
... = m * (n / k) : nat.mul_div_cancel _ H1)
theorem dvd_of_mul_dvd_mul_left {m n k : } (kpos : k > 0) (H : k * m k * n) : m n :=
dvd.elim H
(take l,
assume H1 : k * n = k * m * l,
have H2 : n = m * l, from eq_of_mul_eq_mul_left kpos (H1 ⬝ !mul.assoc),
dvd.intro H2⁻¹)
theorem dvd_of_mul_dvd_mul_right {m n k : } (kpos : k > 0) (H : m * k n * k) : m n :=
nat.dvd_of_mul_dvd_mul_left kpos (!mul.comm ▸ !mul.comm ▸ H)
2015-07-03 05:27:21 +00:00
lemma dvd_of_eq_mul (i j n : nat) : n = j*i → j n :=
begin intros, subst n, apply dvd_mul_right end
theorem div_dvd_div {k m n : } (H1 : k m) (H2 : m n) : m / k n / k :=
have H3 : m = m / k * k, from (nat.div_mul_cancel H1)⁻¹,
have H4 : n = n / k * k, from (nat.div_mul_cancel (dvd.trans H1 H2))⁻¹,
or.elim (eq_zero_or_pos k)
(assume H5 : k = 0,
have H6: n / k = 0, from (congr_arg _ H5 ⬝ !nat.div_zero),
H6⁻¹ ▸ !dvd_zero)
(assume H5 : k > 0,
nat.dvd_of_mul_dvd_mul_right H5 (H3 ▸ H4 ▸ H2))
protected theorem div_eq_iff_eq_mul_right {m n : } (k : ) (H : n > 0) (H' : n m) :
m / n = k ↔ m = n * k :=
iff.intro
(assume H1, by rewrite [-H1, nat.mul_div_cancel' H'])
(assume H1, by rewrite [H1, !nat.mul_div_cancel_left H])
protected theorem div_eq_iff_eq_mul_left {m n : } (k : ) (H : n > 0) (H' : n m) :
m / n = k ↔ m = k * n :=
!mul.comm ▸ !nat.div_eq_iff_eq_mul_right H H'
protected theorem eq_mul_of_div_eq_right {m n k : } (H1 : n m) (H2 : m / n = k) :
m = n * k :=
calc
m = n * (m / n) : nat.mul_div_cancel' H1
... = n * k : H2
protected theorem div_eq_of_eq_mul_right {m n k : } (H1 : n > 0) (H2 : m = n * k) :
m / n = k :=
calc
m / n = n * k / n : H2
... = k : !nat.mul_div_cancel_left H1
protected theorem eq_mul_of_div_eq_left {m n k : } (H1 : n m) (H2 : m / n = k) :
m = k * n :=
!mul.comm ▸ !nat.eq_mul_of_div_eq_right H1 H2
protected theorem div_eq_of_eq_mul_left {m n k : } (H1 : n > 0) (H2 : m = k * n) :
m / n = k :=
!nat.div_eq_of_eq_mul_right H1 (!mul.comm ▸ H2)
lemma add_mod_eq_of_dvd (i j n : nat) : n j → (i + j) % n = i % n :=
2015-07-03 05:27:21 +00:00
assume h,
obtain k (hk : j = n * k), from exists_eq_mul_right_of_dvd h,
begin
subst j, rewrite mul.comm,
apply add_mul_mod_self
end
/- / and ordering -/
2015-10-12 03:29:31 +00:00
lemma le_of_dvd {m n : nat} : n > 0 → m n → m ≤ n :=
2015-07-03 05:27:21 +00:00
assume (h₁ : n > 0) (h₂ : m n),
assert h₃ : n % m = 0, from mod_eq_zero_of_dvd h₂,
2015-07-03 05:27:21 +00:00
by_contradiction
(λ nle : ¬ m ≤ n,
have h₄ : m > n, from lt_of_not_ge nle,
assert h₅ : n % m = n, from mod_eq_of_lt h₄,
2015-07-03 05:27:21 +00:00
begin
rewrite h₃ at h₅, subst n,
exact absurd h₁ (lt.irrefl 0)
end)
theorem div_mul_le (m n : ) : m / n * n ≤ m :=
calc
m = m / n * n + m % n : eq_div_mul_add_mod
... ≥ m / n * n : le_add_right
protected theorem div_le_of_le_mul {m n k : } (H : m ≤ n * k) : m / k ≤ n :=
or.elim (eq_zero_or_pos k)
(assume H1 : k = 0,
calc
m / k = m / 0 : H1
... = 0 : nat.div_zero
... ≤ n : zero_le)
(assume H1 : k > 0,
le_of_mul_le_mul_right (calc
m / k * k ≤ m / k * k + m % k : le_add_right
... = m : eq_div_mul_add_mod
... ≤ n * k : H) H1)
protected theorem div_le_self (m n : ) : m / n ≤ m :=
nat.cases_on n (!nat.div_zero⁻¹ ▸ !zero_le)
take n,
have H : m ≤ m * succ n, from calc
m = m * 1 : mul_one
... ≤ m * succ n : !mul_le_mul_left (succ_le_succ !zero_le),
nat.div_le_of_le_mul H
protected theorem mul_le_of_le_div {m n k : } (H : m ≤ n / k) : m * k ≤ n :=
calc
m * k ≤ n / k * k : !mul_le_mul_right H
... ≤ n : div_mul_le
protected theorem le_div_of_mul_le {m n k : } (H1 : k > 0) (H2 : m * k ≤ n) : m ≤ n / k :=
have H3 : m * k < (succ (n / k)) * k, from
calc
m * k ≤ n : H2
... = n / k * k + n % k : eq_div_mul_add_mod
... < n / k * k + k : add_lt_add_left (!mod_lt H1)
... = (succ (n / k)) * k : succ_mul,
le_of_lt_succ (lt_of_mul_lt_mul_right H3)
protected theorem le_div_iff_mul_le {m n k : } (H : k > 0) : m ≤ n / k ↔ m * k ≤ n :=
iff.intro !nat.mul_le_of_le_div (!nat.le_div_of_mul_le H)
protected theorem div_le_div {m n : } (k : ) (H : m ≤ n) : m / k ≤ n / k :=
by_cases_zero_pos k
(by rewrite [*nat.div_zero])
(take k, assume H1 : k > 0, nat.le_div_of_mul_le H1 (le.trans !div_mul_le H))
protected theorem div_lt_of_lt_mul {m n k : } (H : m < n * k) : m / k < n :=
lt_of_mul_lt_mul_right (calc
m / k * k ≤ m / k * k + m % k : le_add_right
... = m : eq_div_mul_add_mod
... < n * k : H)
protected theorem lt_mul_of_div_lt {m n k : } (H1 : k > 0) (H2 : m / k < n) : m < n * k :=
assert H3 : succ (m / k) * k ≤ n * k, from !mul_le_mul_right (succ_le_of_lt H2),
have H4 : m / k * k + k ≤ n * k, by rewrite [succ_mul at H3]; apply H3,
calc
m = m / k * k + m % k : eq_div_mul_add_mod
... < m / k * k + k : add_lt_add_left (!mod_lt H1)
... ≤ n * k : H4
protected theorem div_lt_iff_lt_mul {m n k : } (H : k > 0) : m / k < n ↔ m < n * k :=
iff.intro (!nat.lt_mul_of_div_lt H) !nat.div_lt_of_lt_mul
protected theorem div_le_iff_le_mul_of_div {m n : } (k : ) (H : n > 0) (H' : n m) :
m / n ≤ k ↔ m ≤ k * n :=
by rewrite [propext (!le_iff_mul_le_mul_right H), !nat.div_mul_cancel H']
protected theorem le_mul_of_div_le_of_div {m n k : } (H1 : n > 0) (H2 : n m) (H3 : m / n ≤ k) :
m ≤ k * n :=
iff.mp (!nat.div_le_iff_le_mul_of_div H1 H2) H3
-- needed for integer division
theorem mul_sub_div_of_lt {m n k : } (H : k < m * n) :
(m * n - (k + 1)) / m = n - k / m - 1 :=
begin
have H1 : k / m < n, from nat.div_lt_of_lt_mul (!mul.comm ▸ H),
have H2 : n - k / m ≥ 1, from
nat.le_sub_of_add_le (calc
1 + k / m = succ (k / m) : add.comm
... ≤ n : succ_le_of_lt H1),
have H3 : n - k / m = n - k / m - 1 + 1, from (nat.sub_add_cancel H2)⁻¹,
2015-10-12 03:29:31 +00:00
have H4 : m > 0, from pos_of_ne_zero (assume H': m = 0, not_lt_zero k (begin rewrite [H' at H, zero_mul at H], exact H end)),
have H5 : k % m + 1 ≤ m, from succ_le_of_lt (!mod_lt H4),
have H6 : m - (k % m + 1) < m, from nat.sub_lt_self H4 !succ_pos,
calc
(m * n - (k + 1)) / m = (m * n - (k / m * m + k % m + 1)) / m : eq_div_mul_add_mod
... = (m * n - k / m * m - (k % m + 1)) / m : by rewrite [*nat.sub_sub]
... = ((n - k / m) * m - (k % m + 1)) / m :
by rewrite [mul.comm m, nat.mul_sub_right_distrib]
... = ((n - k / m - 1) * m + m - (k % m + 1)) / m :
by rewrite [H3 at {1}, right_distrib, nat.one_mul]
... = ((n - k / m - 1) * m + (m - (k % m + 1))) / m : {nat.add_sub_assoc H5 _}
... = (m - (k % m + 1)) / m + (n - k / m - 1) :
by rewrite [add.comm, (add_mul_div_self H4)]
... = n - k / m - 1 :
by rewrite [div_eq_zero_of_lt H6, zero_add]
end
private lemma div_div_aux (a b c : nat) : b > 0 → c > 0 → (a / b) / c = a / (b * c) :=
suppose b > 0, suppose c > 0,
nat.strong_induction_on a
(λ a ih,
let k₁ := a / (b*c) in
let k₂ := a %(b*c) in
assert bc_pos : b*c > 0, from mul_pos `b > 0` `c > 0`,
assert k₂ < b * c, from mod_lt _ bc_pos,
assert k₂ ≤ a, from !mod_le,
or.elim (eq_or_lt_of_le this)
(suppose k₂ = a,
assert i₁ : a < b * c, by rewrite -this; assumption,
assert k₁ = 0, from div_eq_zero_of_lt i₁,
assert a / b < c, by rewrite [mul.comm at i₁]; exact nat.div_lt_of_lt_mul i₁,
begin
rewrite [`k₁ = 0`],
show (a / b) / c = 0, from div_eq_zero_of_lt `a / b < c`
end)
(suppose k₂ < a,
assert a = k₁*(b*c) + k₂, from eq_div_mul_add_mod a (b*c),
assert a / b = k₁*c + k₂ / b, by
rewrite [this at {1}, mul.comm b c at {2}, -mul.assoc,
add.comm, add_mul_div_self `b > 0`, add.comm],
assert e₁ : (a / b) / c = k₁ + (k₂ / b) / c, by
rewrite [this, add.comm, add_mul_div_self `c > 0`, add.comm],
assert e₂ : (k₂ / b) / c = k₂ / (b * c), from ih k₂ `k₂ < a`,
assert e₃ : k₂ / (b * c) = 0, from div_eq_zero_of_lt `k₂ < b * c`,
assert (k₂ / b) / c = 0, by rewrite [e₂, e₃],
show (a / b) / c = k₁, by rewrite [e₁, this]))
protected lemma div_div_eq_div_mul (a b c : nat) : (a / b) / c = a / (b * c) :=
begin
cases b with b,
rewrite [zero_mul, *nat.div_zero, nat.zero_div],
cases c with c,
rewrite [mul_zero, *nat.div_zero],
apply div_div_aux a (succ b) (succ c) dec_trivial dec_trivial
end
lemma div_lt_of_ne_zero : ∀ {n : nat}, n ≠ 0 → n / 2 < n
| 0 h := absurd rfl h
| (succ n) h :=
begin
apply nat.div_lt_of_lt_mul,
rewrite [-add_one, right_distrib],
change n + 1 < (n * 1 + n) + (1 + 1),
rewrite [mul_one, -add.assoc],
apply add_lt_add_right,
show n < n + n + 1,
begin
rewrite [add.assoc, -add_zero n at {1}],
apply add_lt_add_left,
apply zero_lt_succ
end
end
end nat