lean2/library/theories/finite_group_theory/subgroup.lean

375 lines
16 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Haitao Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author : Haitao Zhang
-/
import data algebra.group data
open function eq.ops
open set
namespace coset
-- semigroup coset definition
section
variable {A : Type}
variable [s : semigroup A]
include s
definition lmul (a : A) := λ x, a * x
definition rmul (a : A) := λ x, x * a
definition l a (S : set A) := (lmul a) ' S
definition r a (S : set A) := (rmul a) ' S
lemma lmul_compose : ∀ (a b : A), (lmul a) ∘ (lmul b) = lmul (a*b) :=
take a, take b,
funext (assume x, by
rewrite [↑function.comp, ↑lmul, mul.assoc])
lemma rmul_compose : ∀ (a b : A), (rmul a) ∘ (rmul b) = rmul (b*a) :=
take a, take b,
funext (assume x, by
rewrite [↑function.comp, ↑rmul, mul.assoc])
lemma lcompose a b (S : set A) : l a (l b S) = l (a*b) S :=
calc (lmul a) ' ((lmul b) ' S) = ((lmul a) ∘ (lmul b)) ' S : image_comp
... = lmul (a*b) ' S : lmul_compose
lemma rcompose a b (S : set A) : r a (r b S) = r (b*a) S :=
calc (rmul a) ' ((rmul b) ' S) = ((rmul a) ∘ (rmul b)) ' S : image_comp
... = rmul (b*a) ' S : rmul_compose
lemma l_sub a (S H : set A) : S ⊆ H → (l a S) ⊆ (l a H) := image_subset (lmul a)
definition l_same S (a b : A) := l a S = l b S
definition r_same S (a b : A) := r a S = r b S
lemma l_same.refl S (a : A) : l_same S a a := rfl
lemma l_same.symm S (a b : A) : l_same S a b → l_same S b a := eq.symm
lemma l_same.trans S (a b c : A) : l_same S a b → l_same S b c → l_same S a c := eq.trans
example (S : set A) : equivalence (l_same S) := mk_equivalence (l_same S) (l_same.refl S) (l_same.symm S) (l_same.trans S)
end
end coset
section
variable {A : Type}
variable [s : group A]
include s
definition lmul_by (a : A) := λ x, a * x
definition rmul_by (a : A) := λ x, x * a
definition glcoset a (H : set A) : set A := λ x, H (a⁻¹ * x)
definition grcoset H (a : A) : set A := λ x, H (x * a⁻¹)
end
namespace group_theory
namespace ops
infixr `∘>`:55 := glcoset -- stronger than = (50), weaker than * (70)
infixl `<∘`:55 := grcoset
infixr `∘c`:55 := conj_by
end ops
end group_theory
open group_theory.ops
section
variable {A : Type}
variable [s : group A]
include s
lemma conj_inj (g : A) : injective (conj_by g) :=
injective_of_has_left_inverse (exists.intro (conj_by g⁻¹) take a, !conj_inv_cancel)
lemma lmul_inj (a : A) : injective (lmul_by a) :=
take x₁ x₂ Peq, by esimp [lmul_by] at Peq;
rewrite [-(inv_mul_cancel_left a x₁), -(inv_mul_cancel_left a x₂), Peq]
lemma lmul_inv_on (a : A) (H : set A) : left_inv_on (lmul_by a⁻¹) (lmul_by a) H :=
take x Px, show a⁻¹*(a*x) = x, by rewrite inv_mul_cancel_left
lemma lmul_inj_on (a : A) (H : set A) : inj_on (lmul_by a) H :=
inj_on_of_left_inv_on (lmul_inv_on a H)
lemma glcoset_eq_lcoset a (H : set A) : a ∘> H = coset.l a H :=
ext
begin
intro x,
rewrite [↑glcoset, ↑coset.l, ↑image, ↑set_of, ↑mem, ↑coset.lmul],
apply iff.intro,
intro P1,
apply (exists.intro (a⁻¹ * x)),
apply and.intro,
exact P1,
exact (mul_inv_cancel_left a x),
show (∃ (x_1 : A), H x_1 ∧ a * x_1 = x) → H (a⁻¹ * x), from
assume P2, obtain x_1 P3, from P2,
have P4 : a * x_1 = x, from and.right P3,
have P5 : x_1 = a⁻¹ * x, from eq_inv_mul_of_mul_eq P4,
eq.subst P5 (and.left P3)
end
lemma grcoset_eq_rcoset a (H : set A) : H <∘ a = coset.r a H :=
begin
rewrite [↑grcoset, ↑coset.r, ↑image, ↑coset.rmul, ↑set_of],
apply ext, rewrite ↑mem,
intro x,
apply iff.intro,
show H (x * a⁻¹) → (∃ (x_1 : A), H x_1 ∧ x_1 * a = x), from
assume PH,
exists.intro (x * a⁻¹)
(and.intro PH (inv_mul_cancel_right x a)),
show (∃ (x_1 : A), H x_1 ∧ x_1 * a = x) → H (x * a⁻¹), from
assume Pex,
obtain x_1 Pand, from Pex,
eq.subst (eq_mul_inv_of_mul_eq (and.right Pand)) (and.left Pand)
end
lemma glcoset_sub a (S H : set A) : S ⊆ H → (a ∘> S) ⊆ (a ∘> H) :=
assume Psub,
have P : _, from coset.l_sub a S H Psub,
eq.symm (glcoset_eq_lcoset a S) ▸ eq.symm (glcoset_eq_lcoset a H) ▸ P
lemma glcoset_compose (a b : A) (H : set A) : a ∘> b ∘> H = a*b ∘> H :=
begin
rewrite [*glcoset_eq_lcoset], exact (coset.lcompose a b H)
end
lemma grcoset_compose (a b : A) (H : set A) : H <∘ a <∘ b = H <∘ a*b :=
begin
rewrite [*grcoset_eq_rcoset], exact (coset.rcompose b a H)
end
lemma glcoset_id (H : set A) : 1 ∘> H = H :=
funext (assume x,
calc (1 ∘> H) x = H (1⁻¹*x) : rfl
... = H (1*x) : {one_inv}
... = H x : {one_mul x})
lemma grcoset_id (H : set A) : H <∘ 1 = H :=
funext (assume x,
calc H (x*1⁻¹) = H (x*1) : {one_inv}
... = H x : {mul_one x})
--lemma glcoset_inv a (H : set A) : a⁻¹ ∘> a ∘> H = H :=
-- funext (assume x,
-- calc glcoset a⁻¹ (glcoset a H) x = H x : {mul_inv_cancel_left a⁻¹ x})
lemma glcoset_inv a (H : set A) : a⁻¹ ∘> a ∘> H = H :=
calc a⁻¹ ∘> a ∘> H = (a⁻¹*a) ∘> H : glcoset_compose
... = 1 ∘> H : mul.left_inv
... = H : glcoset_id
lemma grcoset_inv H (a : A) : (H <∘ a) <∘ a⁻¹ = H :=
funext (assume x,
calc grcoset (grcoset H a) a⁻¹ x = H x : {inv_mul_cancel_right x a⁻¹})
lemma glcoset_cancel a b (H : set A) : (b*a⁻¹) ∘> a ∘> H = b ∘> H :=
calc (b*a⁻¹) ∘> a ∘> H = b*a⁻¹*a ∘> H : glcoset_compose
... = b ∘> H : {inv_mul_cancel_right b a}
lemma grcoset_cancel a b (H : set A) : H <∘ a <∘ a⁻¹*b = H <∘ b :=
calc H <∘ a <∘ a⁻¹*b = H <∘ a*(a⁻¹*b) : grcoset_compose
... = H <∘ b : {mul_inv_cancel_left a b}
-- test how precedence breaks tie: infixr takes hold since its encountered first
example a b (H : set A) : a ∘> H <∘ b = a ∘> (H <∘ b) := rfl
-- should be true for semigroup as well but irrelevant
lemma lcoset_rcoset_assoc a b (H : set A) : a ∘> H <∘ b = (a ∘> H) <∘ b :=
funext (assume x, begin
esimp [glcoset, grcoset], rewrite mul.assoc
end)
definition mul_closed_on H := ∀ (x y : A), x ∈ H → y ∈ H → x * y ∈ H
lemma closed_lcontract a (H : set A) : mul_closed_on H → a ∈ H → a ∘> H ⊆ H :=
begin
rewrite [↑mul_closed_on, ↑glcoset, ↑subset, ↑mem],
intro Pclosed, intro PHa, intro x, intro PHainvx,
exact (eq.subst (mul_inv_cancel_left a x)
(Pclosed a (a⁻¹*x) PHa PHainvx))
end
lemma closed_rcontract a (H : set A) : mul_closed_on H → a ∈ H → H <∘ a ⊆ H :=
assume P1 : mul_closed_on H,
assume P2 : H a,
begin
rewrite ↑subset,
intro x,
rewrite [↑grcoset, ↑mem],
intro P3,
exact (eq.subst (inv_mul_cancel_right x a) (P1 (x * a⁻¹) a P3 P2))
end
lemma closed_lcontract_set a (H G : set A) : mul_closed_on G → H ⊆ G → a∈G → a∘>H ⊆ G :=
assume Pclosed, assume PHsubG, assume PainG,
have PaGsubG : a ∘> G ⊆ G, from closed_lcontract a G Pclosed PainG,
have PaHsubaG : a ∘> H ⊆ a ∘> G, from
eq.symm (glcoset_eq_lcoset a H) ▸ eq.symm (glcoset_eq_lcoset a G) ▸ (coset.l_sub a H G PHsubG),
subset.trans PaHsubaG PaGsubG
definition subgroup.has_inv H := ∀ (a : A), a ∈ H → a⁻¹ ∈ H
-- two ways to define the same equivalence relatiohship for subgroups
definition in_lcoset [reducible] H (a b : A) := a ∈ b ∘> H
definition in_rcoset [reducible] H (a b : A) := a ∈ H <∘ b
definition same_lcoset [reducible] H (a b : A) := a ∘> H = b ∘> H
definition same_rcoset [reducible] H (a b : A) := H <∘ a = H <∘ b
definition same_left_right_coset (N : set A) := ∀ x, x ∘> N = N <∘ x
structure is_subgroup [class] (H : set A) : Type :=
(has_one : H 1)
(mul_closed : mul_closed_on H)
(has_inv : subgroup.has_inv H)
structure is_normal_subgroup [class] (N : set A) extends is_subgroup N :=
(normal : same_left_right_coset N)
end
section subgroup
variable {A : Type}
variable [s : group A]
include s
variable {H : set A}
variable [is_subg : is_subgroup H]
include is_subg
section set_reducible
local attribute set [reducible]
lemma subg_has_one : H (1 : A) := @is_subgroup.has_one A s H is_subg
lemma subg_mul_closed : mul_closed_on H := @is_subgroup.mul_closed A s H is_subg
lemma subg_has_inv : subgroup.has_inv H := @is_subgroup.has_inv A s H is_subg
lemma subgroup_coset_id : ∀ a, a ∈ H → (a ∘> H = H ∧ H <∘ a = H) :=
take a, assume PHa : H a,
have Pl : a ∘> H ⊆ H, from closed_lcontract a H subg_mul_closed PHa,
have Pr : H <∘ a ⊆ H, from closed_rcontract a H subg_mul_closed PHa,
have PHainv : H a⁻¹, from subg_has_inv a PHa,
and.intro
(ext (assume x,
begin
esimp [glcoset, mem],
apply iff.intro,
apply Pl,
intro PHx, exact (subg_mul_closed a⁻¹ x PHainv PHx)
end))
(ext (assume x,
begin
esimp [grcoset, mem],
apply iff.intro,
apply Pr,
intro PHx, exact (subg_mul_closed x a⁻¹ PHx PHainv)
end))
lemma subgroup_lcoset_id : ∀ a, a ∈ H → a ∘> H = H :=
take a, assume PHa : H a,
and.left (subgroup_coset_id a PHa)
lemma subgroup_rcoset_id : ∀ a, a ∈ H → H <∘ a = H :=
take a, assume PHa : H a,
and.right (subgroup_coset_id a PHa)
lemma subg_in_coset_refl (a : A) : a ∈ a ∘> H ∧ a ∈ H <∘ a :=
have PH1 : H 1, from subg_has_one,
have PHinvaa : H (a⁻¹*a), from (eq.symm (mul.left_inv a)) ▸ PH1,
have PHainva : H (a*a⁻¹), from (eq.symm (mul.right_inv a)) ▸ PH1,
and.intro PHinvaa PHainva
end set_reducible
lemma subg_in_lcoset_same_lcoset (a b : A) : in_lcoset H a b → same_lcoset H a b :=
assume Pa_in_b : H (b⁻¹*a),
have Pbinva : b⁻¹*a ∘> H = H, from subgroup_lcoset_id (b⁻¹*a) Pa_in_b,
have Pb_binva : b ∘> b⁻¹*a ∘> H = b ∘> H, from Pbinva ▸ rfl,
have Pbbinva : b*(b⁻¹*a)∘>H = b∘>H, from glcoset_compose b (b⁻¹*a) H ▸ Pb_binva,
mul_inv_cancel_left b a ▸ Pbbinva
lemma subg_same_lcoset_in_lcoset (a b : A) : same_lcoset H a b → in_lcoset H a b :=
assume Psame : a∘>H = b∘>H,
have Pa : a ∈ a∘>H, from and.left (subg_in_coset_refl a),
by exact (Psame ▸ Pa)
lemma subg_lcoset_same (a b : A) : in_lcoset H a b = (a∘>H = b∘>H) :=
propext(iff.intro (subg_in_lcoset_same_lcoset a b) (subg_same_lcoset_in_lcoset a b))
lemma subg_rcoset_same (a b : A) : in_rcoset H a b = (H<∘a = H<∘b) :=
propext(iff.intro
(assume Pa_in_b : H (a*b⁻¹),
have Pabinv : H<∘a*b⁻¹ = H, from subgroup_rcoset_id (a*b⁻¹) Pa_in_b,
have Pabinv_b : H <∘ a*b⁻¹ <∘ b = H <∘ b, from Pabinv ▸ rfl,
have Pabinvb : H <∘ a*b⁻¹*b = H <∘ b, from grcoset_compose (a*b⁻¹) b H ▸ Pabinv_b,
inv_mul_cancel_right a b ▸ Pabinvb)
(assume Psame,
have Pa : a ∈ H<∘a, from and.right (subg_in_coset_refl a),
by exact (Psame ▸ Pa)))
lemma subg_same_lcoset.refl (a : A) : same_lcoset H a a := rfl
lemma subg_same_rcoset.refl (a : A) : same_rcoset H a a := rfl
lemma subg_same_lcoset.symm (a b : A) : same_lcoset H a b → same_lcoset H b a := eq.symm
lemma subg_same_rcoset.symm (a b : A) : same_rcoset H a b → same_rcoset H b a := eq.symm
lemma subg_same_lcoset.trans (a b c : A) : same_lcoset H a b → same_lcoset H b c → same_lcoset H a c :=
eq.trans
lemma subg_same_rcoset.trans (a b c : A) : same_rcoset H a b → same_rcoset H b c → same_rcoset H a c :=
eq.trans
variable {S : set A}
lemma subg_lcoset_subset_subg (Psub : S ⊆ H) (a : A) : a ∈ H → a ∘> S ⊆ H :=
assume Pin, have P : a ∘> S ⊆ a ∘> H, from glcoset_sub a S H Psub,
subgroup_lcoset_id a Pin ▸ P
end subgroup
section normal_subg
open quot
variable {A : Type}
variable [s : group A]
include s
variable (N : set A)
variable [is_nsubg : is_normal_subgroup N]
include is_nsubg
local notation a `~` b := same_lcoset N a b -- note : does not bind as strong as →
lemma nsubg_normal : same_left_right_coset N := @is_normal_subgroup.normal A s N is_nsubg
lemma nsubg_same_lcoset_product : ∀ a1 a2 b1 b2, (a1 ~ b1) → (a2 ~ b2) → ((a1*a2) ~ (b1*b2)) :=
take a1, take a2, take b1, take b2,
assume Psame1 : a1 ∘> N = b1 ∘> N,
assume Psame2 : a2 ∘> N = b2 ∘> N,
calc
a1*a2 ∘> N = a1 ∘> a2 ∘> N : glcoset_compose
... = a1 ∘> b2 ∘> N : by rewrite Psame2
... = a1 ∘> (N <∘ b2) : by rewrite (nsubg_normal N)
... = (a1 ∘> N) <∘ b2 : by rewrite lcoset_rcoset_assoc
... = (b1 ∘> N) <∘ b2 : by rewrite Psame1
... = N <∘ b1 <∘ b2 : by rewrite (nsubg_normal N)
... = N <∘ (b1*b2) : by rewrite grcoset_compose
... = (b1*b2) ∘> N : by rewrite (nsubg_normal N)
example (a b : A) : (a⁻¹ ~ b⁻¹) = (a⁻¹ ∘> N = b⁻¹ ∘> N) := rfl
lemma nsubg_same_lcoset_inv : ∀ a b, (a ~ b) → (a⁻¹ ~ b⁻¹) :=
take a b, assume Psame : a ∘> N = b ∘> N, calc
a⁻¹ ∘> N = a⁻¹*b*b⁻¹ ∘> N : by rewrite mul_inv_cancel_right
... = a⁻¹*b ∘> b⁻¹ ∘> N : by rewrite glcoset_compose
... = a⁻¹*b ∘> (N <∘ b⁻¹) : by rewrite nsubg_normal
... = (a⁻¹*b ∘> N) <∘ b⁻¹ : by rewrite lcoset_rcoset_assoc
... = (a⁻¹ ∘> b ∘> N) <∘ b⁻¹ : by rewrite glcoset_compose
... = (a⁻¹ ∘> a ∘> N) <∘ b⁻¹ : by rewrite Psame
... = N <∘ b⁻¹ : by rewrite glcoset_inv
... = b⁻¹ ∘> N : by rewrite nsubg_normal
definition nsubg_setoid [instance] : setoid A :=
setoid.mk (same_lcoset N)
(mk_equivalence (same_lcoset N) (subg_same_lcoset.refl) (subg_same_lcoset.symm) (subg_same_lcoset.trans))
definition coset_of : Type := quot (nsubg_setoid N)
definition coset_inv_base (a : A) : coset_of N := ⟦a⁻¹⟧
definition coset_product (a b : A) : coset_of N := ⟦a*b⟧
lemma coset_product_well_defined : ∀ a1 a2 b1 b2, (a1 ~ b1) → (a2 ~ b2) → ⟦a1*a2⟧ = ⟦b1*b2⟧ :=
take a1 a2 b1 b2, assume P1 P2,
quot.sound (nsubg_same_lcoset_product N a1 a2 b1 b2 P1 P2)
definition coset_mul (aN bN : coset_of N) : coset_of N :=
quot.lift_on₂ aN bN (coset_product N) (coset_product_well_defined N)
lemma coset_inv_well_defined : ∀ a b, (a ~ b) → ⟦a⁻¹⟧ = ⟦b⁻¹⟧ :=
take a b, assume P, quot.sound (nsubg_same_lcoset_inv N a b P)
definition coset_inv (aN : coset_of N) : coset_of N :=
quot.lift_on aN (coset_inv_base N) (coset_inv_well_defined N)
definition coset_one : coset_of N := ⟦1⟧
local infixl `cx`:70 := coset_mul N
example (a b c : A) : ⟦a⟧ cx ⟦b*c⟧ = ⟦a*(b*c)⟧ := rfl
lemma coset_product_assoc (a b c : A) : ⟦a⟧ cx ⟦b⟧ cx ⟦c⟧ = ⟦a⟧ cx (⟦b⟧ cx ⟦c⟧) := calc
⟦a*b*c⟧ = ⟦a*(b*c)⟧ : {mul.assoc a b c}
... = ⟦a⟧ cx ⟦b*c⟧ : rfl
lemma coset_product_left_id (a : A) : ⟦1⟧ cx ⟦a⟧ = ⟦a⟧ := calc
⟦1*a⟧ = ⟦a⟧ : {one_mul a}
lemma coset_product_right_id (a : A) : ⟦a⟧ cx ⟦1⟧ = ⟦a⟧ := calc
⟦a*1⟧ = ⟦a⟧ : {mul_one a}
lemma coset_product_left_inv (a : A) : ⟦a⁻¹⟧ cx ⟦a⟧ = ⟦1⟧ := calc
⟦a⁻¹*a⟧ = ⟦1⟧ : {mul.left_inv a}
lemma coset_mul.assoc (aN bN cN : coset_of N) : aN cx bN cx cN = aN cx (bN cx cN) :=
quot.ind (λ a, quot.ind (λ b, quot.ind (λ c, coset_product_assoc N a b c) cN) bN) aN
lemma coset_mul.one_mul (aN : coset_of N) : coset_one N cx aN = aN :=
quot.ind (coset_product_left_id N) aN
lemma coset_mul.mul_one (aN : coset_of N) : aN cx (coset_one N) = aN :=
quot.ind (coset_product_right_id N) aN
lemma coset_mul.left_inv (aN : coset_of N) : (coset_inv N aN) cx aN = (coset_one N) :=
quot.ind (coset_product_left_inv N) aN
definition mk_quotient_group : group (coset_of N):=
group.mk (coset_mul N) (coset_mul.assoc N) (coset_one N) (coset_mul.one_mul N) (coset_mul.mul_one N) (coset_inv N) (coset_mul.left_inv N)
end normal_subg
namespace group_theory
namespace quotient
section
open quot
variable {A : Type}
variable [s : group A]
include s
variable {N : set A}
variable [is_nsubg : is_normal_subgroup N]
include is_nsubg
definition quotient_group [instance] : group (coset_of N) := mk_quotient_group N
example (aN : coset_of N) : aN * aN⁻¹ = 1 := mul.right_inv aN
definition natural (a : A) : coset_of N := ⟦a⟧
end
end quotient
end group_theory