lean2/hott/types/prod.hlean

49 lines
1.3 KiB
Text
Raw Normal View History

2014-12-11 23:14:53 -05:00
/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn
Ported from Coq HoTT
2014-12-11 23:14:53 -05:00
Theorems about products
-/
open eq equiv is_equiv is_trunc prod prod.ops unit
2014-12-11 23:14:53 -05:00
variables {A A' B B' C D : Type}
{a a' a'' : A} {b b₁ b₂ b' b'' : B} {u v w : A × B}
namespace prod
protected definition eta (u : A × B) : (pr₁ u, pr₂ u) = u :=
by cases u; apply idp
2014-12-11 23:14:53 -05:00
definition pair_eq (pa : a = a') (pb : b = b') : (a, b) = (a', b') :=
by cases pa; cases pb; apply idp
2014-12-11 23:14:53 -05:00
definition prod_eq (H₁ : pr₁ u = pr₁ v) (H₂ : pr₂ u = pr₂ v) : u = v :=
by cases u; cases v; exact pair_eq H₁ H₂
2014-12-11 23:14:53 -05:00
/- Symmetry -/
definition is_equiv_flip [instance] (A B : Type) : is_equiv (@flip A B) :=
2014-12-11 23:14:53 -05:00
adjointify flip
flip
(λu, destruct u (λb a, idp))
(λu, destruct u (λa b, idp))
definition prod_comm_equiv (A B : Type) : A × B ≃ B × A :=
2014-12-11 23:14:53 -05:00
equiv.mk flip _
definition prod_contr_equiv (A B : Type) [H : is_contr B] : A × B ≃ A :=
equiv.MK pr1
(λx, (x, !center))
(λx, idp)
(λx, by cases x with a b; exact pair_eq idp !center_eq)
definition prod_unit_equiv (A : Type) : A × unit ≃ A :=
!prod_contr_equiv
-- is_trunc_prod is defined in sigma
2014-12-11 23:14:53 -05:00
end prod