lean2/hott/algebra/homotopy_group.hlean

268 lines
11 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
homotopy groups of a pointed space
-/
import .trunc_group types.trunc .group_theory
open nat eq pointed trunc is_trunc algebra group function equiv unit is_equiv
-- TODO: consistently make n an argument before A
namespace eq
definition phomotopy_group [reducible] [constructor] (n : ) (A : Type*) : Set* :=
ptrunc 0 (Ω[n] A)
definition homotopy_group [reducible] (n : ) (A : Type*) : Type :=
phomotopy_group n A
notation `π*[`:95 n:0 `] `:0 := phomotopy_group n
notation `π[`:95 n:0 `] `:0 := homotopy_group n
definition group_homotopy_group [instance] [constructor] [reducible] (n : ) (A : Type*)
: group (π[succ n] A) :=
trunc_group concat inverse idp con.assoc idp_con con_idp con.left_inv
definition group_homotopy_group2 [instance] (k : ) (A : Type*) :
group (carrier (ptrunctype.to_pType (π*[k + 1] A))) :=
group_homotopy_group k A
definition comm_group_homotopy_group [constructor] [reducible] (n : ) (A : Type*)
: comm_group (π[succ (succ n)] A) :=
trunc_comm_group concat inverse idp con.assoc idp_con con_idp con.left_inv eckmann_hilton
local attribute comm_group_homotopy_group [instance]
definition ghomotopy_group [constructor] (n : ) (A : Type*) : Group :=
Group.mk (π[succ n] A) _
definition cghomotopy_group [constructor] (n : ) (A : Type*) : CommGroup :=
CommGroup.mk (π[succ (succ n)] A) _
definition fundamental_group [constructor] (A : Type*) : Group :=
ghomotopy_group zero A
notation `πg[`:95 n:0 ` +1] `:0 A:95 := ghomotopy_group n A
notation `πag[`:95 n:0 ` +2] `:0 A:95 := cghomotopy_group n A
notation `π₁` := fundamental_group -- should this be notation for the group or pointed type?
definition tr_mul_tr {n : } {A : Type*} (p q : Ω[n + 1] A) :
tr p *[πg[n+1] A] tr q = tr (p ⬝ q) :=
by reflexivity
definition tr_mul_tr' {n : } {A : Type*} (p q : Ω[succ n] A)
: tr p *[π[succ n] A] tr q = tr (p ⬝ q) :=
idp
2016-03-01 04:37:03 +00:00
definition phomotopy_group_pequiv [constructor] (n : ) {A B : Type*} (H : A ≃* B)
: π*[n] A ≃* π*[n] B :=
ptrunc_pequiv_ptrunc 0 (loopn_pequiv_loopn n H)
2016-03-01 04:37:03 +00:00
definition phomotopy_group_pequiv_loop_ptrunc [constructor] (k : ) (A : Type*) :
π*[k] A ≃* Ω[k] (ptrunc k A) :=
begin
refine !iterated_loop_ptrunc_pequiv⁻¹ᵉ* ⬝e* _,
exact loopn_pequiv_loopn k (pequiv_of_eq begin rewrite [trunc_index.zero_add] end)
end
definition phomotopy_group_ptrunc [constructor] (k : ) (A : Type*) :
π*[k] (ptrunc k A) ≃* π*[k] A :=
calc
π*[k] (ptrunc k A) ≃* Ω[k] (ptrunc k (ptrunc k A))
: phomotopy_group_pequiv_loop_ptrunc k (ptrunc k A)
... ≃* Ω[k] (ptrunc k A)
: loopn_pequiv_loopn k (ptrunc_pequiv k (ptrunc k A) _)
... ≃* π*[k] A : (phomotopy_group_pequiv_loop_ptrunc k A)⁻¹ᵉ*
theorem trivial_homotopy_of_is_set (A : Type*) [H : is_set A] (n : ) : πg[n+1] A ≃g G0 :=
begin
apply trivial_group_of_is_contr,
apply is_trunc_trunc_of_is_trunc,
apply is_contr_loop_of_is_trunc,
apply is_trunc_succ_succ_of_is_set
end
2016-03-01 04:37:03 +00:00
definition phomotopy_group_succ_out (A : Type*) (n : ) : π*[n + 1] A = π₁ Ω[n] A := idp
definition phomotopy_group_succ_in (A : Type*) (n : ) : π*[n + 1] A = π*[n] (Ω A) :> Type* :=
2016-03-01 04:37:03 +00:00
ap (ptrunc 0) (loop_space_succ_eq_in A n)
2016-03-01 04:37:03 +00:00
definition ghomotopy_group_succ_out (A : Type*) (n : ) : πg[n +1] A = π₁ Ω[n] A := idp
definition phomotopy_group_succ_in_con {A : Type*} {n : } (g h : πg[succ n +1] A) :
pcast (phomotopy_group_succ_in A (succ n)) (g * h) =
pcast (phomotopy_group_succ_in A (succ n)) g *
pcast (phomotopy_group_succ_in A (succ n)) h :=
begin
induction g with p, induction h with q, esimp,
rewrite [-+ tr_eq_cast_ap, ↑phomotopy_group_succ_in, -+ tr_compose],
refine ap (transport _ _) !tr_mul_tr' ⬝ _,
rewrite [+ trunc_transport],
apply ap tr, apply loop_space_succ_eq_in_concat,
end
definition ghomotopy_group_succ_in (A : Type*) (n : ) : πg[succ n +1] A ≃g πg[n +1] Ω A :=
begin
fapply isomorphism_of_equiv,
2016-03-01 04:37:03 +00:00
{ apply equiv_of_eq, exact ap (ptrunc 0) (loop_space_succ_eq_in A (succ n))},
{ exact abstract [irreducible] begin refine trunc.rec _, intro p, refine trunc.rec _, intro q,
rewrite [▸*,-+tr_eq_cast_ap, +trunc_transport], refine !trunc_transport ⬝ _, apply ap tr,
apply loop_space_succ_eq_in_concat end end},
end
definition phomotopy_group_functor [constructor] (n : ) {A B : Type*} (f : A →* B)
: π*[n] A →* π*[n] B :=
ptrunc_functor 0 (apn n f)
2016-03-01 04:37:03 +00:00
definition homotopy_group_functor (n : ) {A B : Type*} (f : A →* B) : π[n] A → π[n] B :=
phomotopy_group_functor n f
notation `π→*[`:95 n:0 `] `:0 := phomotopy_group_functor n
notation `π→[`:95 n:0 `] `:0 := homotopy_group_functor n
2016-03-01 04:37:03 +00:00
definition phomotopy_group_functor_phomotopy [constructor] (n : ) {A B : Type*} {f g : A →* B}
(p : f ~* g) : π→*[n] f ~* π→*[n] g :=
ptrunc_functor_phomotopy 0 (apn_phomotopy n p)
definition phomotopy_group_functor_compose [constructor] (n : ) {A B C : Type*} (g : B →* C)
(f : A →* B) : π→*[n] (g ∘* f) ~* π→*[n] g ∘* π→*[n] f :=
ptrunc_functor_phomotopy 0 !apn_compose ⬝* !ptrunc_functor_pcompose
definition is_equiv_homotopy_group_functor [constructor] (n : ) {A B : Type*} (f : A →* B)
[is_equiv f] : is_equiv (π→[n] f) :=
@(is_equiv_trunc_functor 0 _) !is_equiv_apn
definition phomotopy_group_functor_succ_phomotopy_in (n : ) {A B : Type*} (f : A →* B) :
pcast (phomotopy_group_succ_in B n) ∘* π→*[n + 1] f ~*
π→*[n] (Ω→ f) ∘* pcast (phomotopy_group_succ_in A n) :=
begin
refine pwhisker_right _ (pcast_ptrunc 0 (loop_space_succ_eq_in B n)) ⬝* _,
refine _ ⬝* pwhisker_left _ (pcast_ptrunc 0 (loop_space_succ_eq_in A n))⁻¹*,
refine !ptrunc_functor_pcompose⁻¹* ⬝* _ ⬝* !ptrunc_functor_pcompose,
exact ptrunc_functor_phomotopy 0 (apn_succ_phomotopy_in n f)
end
definition is_equiv_phomotopy_group_functor_ap1 (n : ) {A B : Type*} (f : A →* B)
[is_equiv (π→*[n + 1] f)] : is_equiv (π→*[n] (Ω→ f)) :=
have is_equiv (pcast (phomotopy_group_succ_in B n) ∘* π→*[n + 1] f),
begin apply @(is_equiv_compose (π→*[n + 1] f) _) end,
have is_equiv (π→*[n] (Ω→ f) ∘ pcast (phomotopy_group_succ_in A n)),
from is_equiv.homotopy_closed _ (phomotopy_group_functor_succ_phomotopy_in n f),
is_equiv.cancel_right (pcast (phomotopy_group_succ_in A n)) _
2016-03-01 04:37:03 +00:00
definition tinverse [constructor] {X : Type*} : π*[1] X →* π*[1] X :=
ptrunc_functor 0 pinverse
definition is_equiv_tinverse [constructor] (A : Type*) : is_equiv (@tinverse A) :=
by apply @is_equiv_trunc_functor; apply is_equiv_eq_inverse
2016-03-01 04:37:03 +00:00
definition ptrunc_functor_pinverse [constructor] {X : Type*}
: ptrunc_functor 0 (@pinverse X) ~* @tinverse X :=
begin
fapply phomotopy.mk,
{ reflexivity},
{ reflexivity}
end
definition phomotopy_group_functor_mul [constructor] (n : ) {A B : Type*} (g : A →* B)
(p q : πg[n+1] A) :
(π→[n + 1] g) (p *[πg[n+1] A] q) = (π→[n + 1] g) p *[πg[n+1] B] (π→[n + 1] g) q :=
begin
unfold [ghomotopy_group, homotopy_group] at *,
refine @trunc.rec _ _ _ (λq, !is_trunc_eq) _ p, clear p, intro p,
refine @trunc.rec _ _ _ (λq, !is_trunc_eq) _ q, clear q, intro q,
apply ap tr, apply apn_con
end
definition homotopy_group_homomorphism [constructor] (n : ) {A B : Type*} (f : A →* B)
: πg[n+1] A →g πg[n+1] B :=
begin
fconstructor,
{ exact phomotopy_group_functor (n+1) f},
{ apply phomotopy_group_functor_mul}
end
definition homotopy_group_isomorphism_of_pequiv [constructor] (n : ) {A B : Type*} (f : A ≃* B)
: πg[n+1] A ≃g πg[n+1] B :=
begin
apply isomorphism.mk (homotopy_group_homomorphism n f),
esimp, apply is_equiv_trunc_functor, apply is_equiv_apn,
end
definition homotopy_group_add (A : Type*) (n m : ) : πg[n+m +1] A ≃g πg[n +1] Ω[m] A :=
begin
revert A, induction m with m IH: intro A,
{ reflexivity},
{ esimp [iterated_ploop_space, nat.add], refine !ghomotopy_group_succ_in ⬝g _, refine !IH ⬝g _,
apply homotopy_group_isomorphism_of_pequiv,
exact pequiv_of_eq !loop_space_succ_eq_in⁻¹}
end
theorem trivial_homotopy_add_of_is_set_loop_space {A : Type*} {n : } (m : )
(H : is_set (Ω[n] A)) : πg[m+n+1] A ≃g G0 :=
!homotopy_group_add ⬝g !trivial_homotopy_of_is_set
theorem trivial_homotopy_le_of_is_set_loop_space {A : Type*} {n : } (m : ) (H1 : n ≤ m)
(H2 : is_set (Ω[n] A)) : πg[m+1] A ≃g G0 :=
obtain (k : ) (p : n + k = m), from le.elim H1,
isomorphism_of_eq (ap (λx, πg[x+1] A) (p⁻¹ ⬝ add.comm n k)) ⬝g
trivial_homotopy_add_of_is_set_loop_space k H2
definition phomotopy_group_pequiv_loop_ptrunc_con {k : } {A : Type*} (p q : πg[k +1] A) :
phomotopy_group_pequiv_loop_ptrunc (succ k) A (p * q) =
phomotopy_group_pequiv_loop_ptrunc (succ k) A p ⬝
phomotopy_group_pequiv_loop_ptrunc (succ k) A q :=
begin
refine _ ⬝ !loopn_pequiv_loopn_con,
exact ap (loopn_pequiv_loopn _ _) !iterated_loop_ptrunc_pequiv_inv_con
end
definition phomotopy_group_pequiv_loop_ptrunc_inv_con {k : } {A : Type*}
(p q : Ω[succ k] (ptrunc (succ k) A)) :
(phomotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* (p ⬝ q) =
(phomotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* p *
(phomotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* q :=
inv_preserve_binary (phomotopy_group_pequiv_loop_ptrunc (succ k) A) mul concat
(@phomotopy_group_pequiv_loop_ptrunc_con k A) p q
definition ghomotopy_group_ptrunc [constructor] (k : ) (A : Type*) :
πg[k+1] (ptrunc (k+1) A) ≃g πg[k+1] A :=
begin
fapply isomorphism_of_equiv,
{ exact phomotopy_group_ptrunc (k+1) A},
{ intro g₁ g₂, esimp,
refine _ ⬝ !phomotopy_group_pequiv_loop_ptrunc_inv_con,
apply ap ((phomotopy_group_pequiv_loop_ptrunc (k+1) A)⁻¹ᵉ*),
refine _ ⬝ !loopn_pequiv_loopn_con ,
apply ap (loopn_pequiv_loopn (k+1) _),
apply phomotopy_group_pequiv_loop_ptrunc_con}
end
/- some homomorphisms -/
definition is_homomorphism_cast_loop_space_succ_eq_in {A : Type*} (n : ) :
is_homomorphism
(cast (ap (trunc 0 ∘ pointed.carrier) (loop_space_succ_eq_in A (succ n)))
: πg[n+1+1] A → πg[n+1] Ω A) :=
begin
intro g h, induction g with g, induction h with h,
xrewrite [tr_mul_tr, - + fn_cast_eq_cast_fn _ (λn, tr), tr_mul_tr, ↑cast, -tr_compose,
loop_space_succ_eq_in_concat, - + tr_compose],
end
2016-03-01 04:37:03 +00:00
definition is_homomorphism_inverse (A : Type*) (n : )
: is_homomorphism (λp, p⁻¹ : πag[n+2] A → πag[n+2] A) :=
begin
intro g h, rewrite mul.comm,
induction g with g, induction h with h,
exact ap tr !con_inv
end
notation `π→g[`:95 n:0 ` +1] `:0 f:95 := homotopy_group_homomorphism n f
end eq