lean2/hott/algebra/binary.hlean

118 lines
4.5 KiB
Text
Raw Normal View History

2014-12-12 04:14:53 +00:00
/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
2014-12-12 04:14:53 +00:00
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Jeremy Avigad
General properties of binary operations.
-/
open eq.ops function
2014-12-12 04:14:53 +00:00
2014-12-12 19:19:06 +00:00
namespace binary
2014-12-12 04:14:53 +00:00
section
variable {A : Type}
variables (op₁ : A → A → A) (inv : A → A) (one : A)
local notation a * b := op₁ a b
local notation a ⁻¹ := inv a
2014-12-12 04:14:53 +00:00
definition commutative := Πa b, a * b = b * a
definition associative := Πa b c, (a * b) * c = a * (b * c)
definition left_identity := Πa, one * a = a
definition right_identity := Πa, a * one = a
definition left_inverse := Πa, a⁻¹ * a = one
definition right_inverse := Πa, a * a⁻¹ = one
definition left_cancelative := Πa b c, a * b = a * c → b = c
definition right_cancelative := Πa b c, a * b = c * b → a = c
definition inv_op_cancel_left := Πa b, a⁻¹ * (a * b) = b
definition op_inv_cancel_left := Πa b, a * (a⁻¹ * b) = b
definition inv_op_cancel_right := Πa b, a * b⁻¹ * b = a
definition op_inv_cancel_right := Πa b, a * b * b⁻¹ = a
2014-12-12 04:14:53 +00:00
variable (op₂ : A → A → A)
local notation a + b := op₂ a b
2014-12-12 04:14:53 +00:00
definition left_distributive := Πa b c, a * (b + c) = a * b + a * c
definition right_distributive := Πa b c, (a + b) * c = a * c + b * c
definition right_commutative {B : Type} (f : B → A → B) := Π b a₁ a₂, f (f b a₁) a₂ = f (f b a₂) a₁
definition left_commutative {B : Type} (f : A → B → B) := Π a₁ a₂ b, f a₁ (f a₂ b) = f a₂ (f a₁ b)
2014-12-12 04:14:53 +00:00
end
section
2014-12-12 04:14:53 +00:00
variable {A : Type}
variable {f : A → A → A}
variable H_comm : commutative f
variable H_assoc : associative f
local infixl `*` := f
theorem left_comm : left_commutative f :=
2014-12-12 04:14:53 +00:00
take a b c, calc
2014-12-12 18:17:50 +00:00
a*(b*c) = (a*b)*c : H_assoc
... = (b*a)*c : H_comm
... = b*(a*c) : H_assoc
2014-12-12 04:14:53 +00:00
theorem right_comm : right_commutative f :=
2014-12-12 04:14:53 +00:00
take a b c, calc
2014-12-12 18:17:50 +00:00
(a*b)*c = a*(b*c) : H_assoc
... = a*(c*b) : H_comm
... = (a*c)*b : H_assoc
theorem comm4 (a b c d : A) : a*b*(c*d) = a*c*(b*d) :=
calc
a*b*(c*d) = a*b*c*d : H_assoc
... = a*c*b*d : right_comm H_comm H_assoc
... = a*c*(b*d) : H_assoc
2014-12-12 04:14:53 +00:00
end
section
2014-12-12 04:14:53 +00:00
variable {A : Type}
variable {f : A → A → A}
variable H_assoc : associative f
local infixl `*` := f
2014-12-12 18:17:50 +00:00
theorem assoc4helper (a b c d) : (a*b)*(c*d) = a*((b*c)*d) :=
2014-12-12 04:14:53 +00:00
calc
2014-12-12 18:17:50 +00:00
(a*b)*(c*d) = a*(b*(c*d)) : H_assoc
... = a*((b*c)*d) : H_assoc
2014-12-12 04:14:53 +00:00
end
definition right_commutative_compose_right
{A B : Type} (f : A → A → A) (g : B → A) (rcomm : right_commutative f) : right_commutative (compose_right f g) :=
λ a b₁ b₂, !rcomm
definition left_commutative_compose_left
{A B : Type} (f : A → A → A) (g : B → A) (lcomm : left_commutative f) : left_commutative (compose_left f g) :=
λ a b₁ b₂, !lcomm
2014-12-12 19:19:06 +00:00
end binary
open eq
namespace is_equiv
definition inv_preserve_binary {A B : Type} (f : A → B) [H : is_equiv f]
(mA : A → A → A) (mB : B → B → B) (H : Π(a a' : A), mB (f a) (f a') = f (mA a a'))
(b b' : B) : f⁻¹ (mB b b') = mA (f⁻¹ b) (f⁻¹ b') :=
begin
have H2 : f⁻¹ (mB (f (f⁻¹ b)) (f (f⁻¹ b'))) = f⁻¹ (f (mA (f⁻¹ b) (f⁻¹ b'))), from ap f⁻¹ !H,
rewrite [+right_inv f at H2,left_inv f at H2,▸* at H2,H2]
end
definition preserve_binary_of_inv_preserve {A B : Type} (f : A → B) [H : is_equiv f]
(mA : A → A → A) (mB : B → B → B) (H : Π(b b' : B), mA (f⁻¹ b) (f⁻¹ b') = f⁻¹ (mB b b'))
(a a' : A) : f (mA a a') = mB (f a) (f a') :=
begin
have H2 : f (mA (f⁻¹ (f a)) (f⁻¹ (f a'))) = f (f⁻¹ (mB (f a) (f a'))), from ap f !H,
rewrite [right_inv f at H2,+left_inv f at H2,▸* at H2,H2]
end
end is_equiv
namespace equiv
open is_equiv equiv.ops
definition inv_preserve_binary {A B : Type} (f : A ≃ B)
(mA : A → A → A) (mB : B → B → B) (H : Π(a a' : A), mB (f a) (f a') = f (mA a a'))
(b b' : B) : f⁻¹ (mB b b') = mA (f⁻¹ b) (f⁻¹ b') :=
inv_preserve_binary f mA mB H b b'
definition preserve_binary_of_inv_preserve {A B : Type} (f : A ≃ B)
(mA : A → A → A) (mB : B → B → B) (H : Π(b b' : B), mA (f⁻¹ b) (f⁻¹ b') = f⁻¹ (mB b b'))
(a a' : A) : f (mA a a') = mB (f a) (f a') :=
preserve_binary_of_inv_preserve f mA mB H a a'
end equiv