lean2/hott/algebra/category/category.hlean

70 lines
2.1 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
2014-12-12 04:14:53 +00:00
Module: algebra.category.category
Author: Jakob von Raumer
-/
2014-12-12 04:14:53 +00:00
import .iso
2014-12-12 04:14:53 +00:00
open iso is_equiv eq is_trunc
-- A category is a precategory extended by a witness
-- that the function from paths to isomorphisms,
2014-12-12 04:14:53 +00:00
-- is an equivalecnce.
namespace category
definition is_univalent [reducible] {ob : Type} (C : precategory ob) :=
Π(a b : ob), is_equiv (@iso_of_eq ob C a b)
2014-12-12 04:14:53 +00:00
structure category [class] (ob : Type) extends parent : precategory ob :=
mk' :: (iso_of_path_equiv : is_univalent parent)
attribute category [multiple-instances]
abbreviation iso_of_path_equiv := @category.iso_of_path_equiv
definition category.mk [reducible] {ob : Type} (C : precategory ob)
(H : Π (a b : ob), is_equiv (iso_of_eq : a = b → a ≅ b)) : category ob :=
precategory.rec_on C category.mk' H
section basic
variables {ob : Type} [C : category ob]
2014-12-12 04:14:53 +00:00
include C
-- Make iso_of_path_equiv a class instance
-- TODO: Unsafe class instance?
attribute iso_of_path_equiv [instance]
2014-12-12 04:14:53 +00:00
definition eq_of_iso [reducible] {a b : ob} : a ≅ b → a = b :=
iso_of_eq⁻¹ᵉ
2014-12-12 04:14:53 +00:00
definition is_trunc_1_ob : is_trunc 1 ob :=
2014-12-12 04:14:53 +00:00
begin
apply is_trunc_succ_intro, intros [a, b],
fapply is_trunc_is_equiv_closed,
exact (@eq_of_iso _ _ a b),
apply is_equiv_inv,
2014-12-12 04:14:53 +00:00
end
end basic
2014-12-12 04:14:53 +00:00
-- Bundled version of categories
-- we don't use Category.carrier explicitly, but rather use Precategory.carrier (to_Precategory C)
structure Category : Type :=
(carrier : Type)
(struct : category carrier)
2014-12-12 04:14:53 +00:00
attribute Category.struct [instance] [coercion]
definition Category.to_Precategory [coercion] [reducible] (C : Category) : Precategory :=
Precategory.mk (Category.carrier C) C
definition category.Mk [reducible] := Category.mk
definition category.MK [reducible] (C : Precategory)
(H : is_univalent C) : Category := Category.mk C (category.mk C H)
definition Category.eta (C : Category) : Category.mk C C = C :=
Category.rec (λob c, idp) C
end category