lean2/src/kernel/environment.cpp

362 lines
12 KiB
C++
Raw Normal View History

/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include <algorithm>
#include <vector>
#include <limits>
#include <atomic>
#include <sstream>
#include <unordered_map>
#include "environment.h"
#include "type_check.h"
#include "exception.h"
#include "debug.h"
namespace lean {
constexpr unsigned uninit = std::numeric_limits<int>::max();
environment::definition::definition(name const & n, expr const & t, expr const & v, bool opaque):
m_name(n),
m_type(t),
m_value(v),
m_opaque(opaque) {
}
environment::definition::~definition() {
}
environment::object_kind environment::definition::kind() const {
return object_kind::Definition;
}
void environment::definition::display(std::ostream & out) const {
out << "Definition " << m_name << " : " << m_type << " := " << m_value << "\n";
}
environment::fact::fact(name const & n, expr const & t):
m_name(n),
m_type(t) {
}
environment::fact::~fact() {
}
environment::object_kind environment::fact::kind() const {
return object_kind::Fact;
}
void environment::fact::display(std::ostream & out) const {
out << "Fact " << m_name << " : " << m_type << "\n";
}
/** \brief Implementation of the Lean environment. */
struct environment::imp {
typedef std::unordered_map<name, object *, name_hash, name_eq> object_dictionary;
std::vector<std::vector<unsigned>> m_uvar_distances;
std::vector<level> m_uvars;
std::atomic<unsigned> m_num_children;
std::shared_ptr<imp> m_parent;
std::vector<object*> m_objects;
object_dictionary m_object_dictionary;
bool has_children() const { return m_num_children > 0; }
void inc_children() { m_num_children++; }
void dec_children() { m_num_children--; }
bool has_parent() const { return m_parent != nullptr; }
/** \brief Return v - k. It throws an exception if there is a underflow. */
static int sub(int v, unsigned k) {
long long r = static_cast<long long>(v) - static_cast<long long>(k);
if (r < std::numeric_limits<int>::min())
throw exception("universe overflow");
return static_cast<int>(r);
}
/** \brief Return v + k. It throws an exception if there is an overflow. */
static int add(int v, unsigned k) {
long long r = static_cast<long long>(v) + static_cast<long long>(k);
if (r > std::numeric_limits<int>::max() - 1)
throw exception("universe overflow");
return static_cast<int>(r);
}
/** \brief Return v + k. It throws an exception if there is an overflow. */
static unsigned add(unsigned v, unsigned k) {
unsigned long long r = static_cast<unsigned long long>(v) + static_cast<unsigned long long>(k);
if (r > std::numeric_limits<int>::max() - 1)
throw exception("universe overflow");
return static_cast<unsigned>(r);
}
/** \brief Return true iff l1 >= l2 + k */
bool is_ge(level const & l1, level const & l2, int k) {
switch (kind(l2)) {
case level_kind::UVar:
switch (kind(l1)) {
case level_kind::UVar: {
unsigned d = m_uvar_distances[uvar_idx(l1)][uvar_idx(l2)];
return d != uninit && (k < 0 || (k >= 0 && d >= static_cast<unsigned>(k)));
}
case level_kind::Lift: return is_ge(lift_of(l1), l2, sub(k, lift_offset(l1)));
case level_kind::Max: return std::any_of(max_begin_levels(l1), max_end_levels(l1), [&](level const & l) { return is_ge(l, l2, k); });
}
case level_kind::Lift: return is_ge(l1, lift_of(l2), add(k, lift_offset(l2)));
case level_kind::Max: return std::all_of(max_begin_levels(l2), max_end_levels(l2), [&](level const & l) { return is_ge(l1, l, k); });
}
lean_unreachable();
return false;
}
bool is_ge(level const & l1, level const & l2) {
if (has_parent())
return m_parent->is_ge(l1, l2);
else
return is_ge(l1, l2, 0);
}
level add_var(name const & n) {
if (std::any_of(m_uvars.begin(), m_uvars.end(), [&](level const & l){ return uvar_name(l) == n; }))
throw exception("invalid universe variable declaration, it has already been declared");
unsigned idx = m_uvars.size();
level r(n, idx);
m_uvars.push_back(r);
std::for_each(m_uvar_distances.begin(), m_uvar_distances.end(), [](std::vector<unsigned> & v) { v.push_back(uninit); });
m_uvar_distances.push_back(std::vector<unsigned>());
std::vector<unsigned> & d = m_uvar_distances.back();
d.resize(m_uvars.size(), static_cast<unsigned>(uninit));
d[idx] = 0;
return r;
}
void add_constraint(uvar v1, uvar v2, unsigned d) {
lean_assert(v1 != v2);
unsigned num = m_uvar_distances.size();
lean_assert(v1 < num);
lean_assert(v2 < num);
std::vector<unsigned> & v1_dists = m_uvar_distances[v1];
if (v1_dists[v2] == uninit || d >= v1_dists[v2]) {
v1_dists[v2] = d;
// update forward
std::vector<unsigned> & v2_dists = m_uvar_distances[v2];
for (uvar v3 = 0; v3 < num; v3++) {
if (v2_dists[v3] != uninit) {
lean_assert(v1 != v3);
unsigned d_v1_v3 = add(d, v2_dists[v3]);
if (v1_dists[v3] == uninit || d_v1_v3 >= v1_dists[v3])
v1_dists[v3] = d_v1_v3;
}
}
}
}
void add_constraints(uvar v1, level const & l, unsigned k) {
switch (kind(l)) {
case level_kind::UVar: add_constraint(v1, uvar_idx(l), k); return;
case level_kind::Lift: add_constraints(v1, lift_of(l), add(k, lift_offset(l))); return;
case level_kind::Max: std::for_each(max_begin_levels(l), max_end_levels(l), [&](level const & l1) { add_constraints(v1, l1, k); }); return;
}
lean_unreachable();
}
level define_uvar(name const & n, level const & l) {
if (has_parent())
throw exception("invalid universe declaration, universe variables can only be declared in top-level environments");
if (has_children())
throw exception("invalid universe declaration, environment has children environments");
level r = add_var(n);
add_constraints(uvar_idx(r), l, 0);
return r;
}
level get_uvar(name const & n) const {
if (has_parent()) {
return m_parent->get_uvar(n);
} else {
auto it = std::find_if(m_uvars.begin(), m_uvars.end(), [&](level const & l) { return uvar_name(l) == n; });
if (it == m_uvars.end()) {
std::ostringstream s;
s << "unknown universe variable '" << n << "'";
throw exception (s.str());
} else {
return *it;
}
}
}
void init_uvars() {
m_uvars.push_back(level());
m_uvar_distances.push_back(std::vector<unsigned>());
m_uvar_distances.back().push_back(0);
lean_assert(uvar_idx(m_uvars.back()) == 0);
}
void display_uvars(std::ostream & out) const {
std::for_each(m_uvars.begin(), m_uvars.end(),
[&](level const & u) {
std::vector<unsigned> const & u_dists = m_uvar_distances[uvar_idx(u)];
unsigned num = u_dists.size();
for (uvar v2 = 0; v2 < num; v2++) {
if (v2 != uvar_idx(u) && u_dists[v2] != uninit) {
out << uvar_name(u) << " >= " << uvar_name(m_uvars[v2]);
if (u_dists[v2] > 0)
out << " + " << u_dists[v2];
out << "\n";
}
}
});
}
void check_no_children() {
if (has_children())
throw exception("invalid object declaration, environment has children environments");
}
void check_name(name const & n) {
if (m_object_dictionary.find(n) != m_object_dictionary.end()) {
std::ostringstream s;
s << "environment already contains an object with name '" << n << "'";
throw exception (s.str());
}
}
void add_definition(name const & n, expr const & t, expr const & v, bool opaque) {
m_objects.push_back(new definition(n, t, v, opaque));
m_object_dictionary.insert(std::make_pair(n, m_objects.back()));
}
void add_fact(name const & n, expr const & t) {
m_objects.push_back(new fact(n, t));
m_object_dictionary.insert(std::make_pair(n, m_objects.back()));
}
object const * get_object_ptr(name const & n) const {
auto it = m_object_dictionary.find(n);
if (it == m_object_dictionary.end()) {
if (has_parent())
return m_parent->get_object_ptr(n);
else
return nullptr;
} else {
return it->second;
}
}
object const & get_object(name const & n) const {
object const * ptr = get_object_ptr(n);
if (ptr) {
return *ptr;
} else {
std::ostringstream s;
s << "unknown object '" << n << "'";
throw exception (s.str());
}
}
imp():
m_num_children(0) {
init_uvars();
}
explicit imp(std::shared_ptr<imp> const & parent):
m_num_children(0),
m_parent(parent) {
m_parent->inc_children();
}
~imp() {
if (m_parent)
m_parent->dec_children();
std::for_each(m_objects.begin(), m_objects.end(), [](object * obj) { delete obj; });
}
};
environment::environment():
m_imp(new imp()) {
}
environment::environment(imp * new_ptr):
m_imp(new_ptr) {
}
environment::environment(std::shared_ptr<imp> const & ptr):
m_imp(ptr) {
}
environment::~environment() {
}
level environment::define_uvar(name const & n, level const & l) {
return m_imp->define_uvar(n, l);
}
bool environment::is_ge(level const & l1, level const & l2) const {
return m_imp->is_ge(l1, l2);
}
void environment::display_uvars(std::ostream & out) const {
m_imp->display_uvars(out);
}
environment environment::mk_child() const {
return environment(new imp(m_imp));
}
bool environment::has_children() const {
return m_imp->has_children();
}
bool environment::has_parent() const {
return m_imp->has_parent();
}
environment environment::parent() const {
lean_assert(has_parent());
return environment(m_imp->m_parent);
}
level environment::get_uvar(name const & n) const {
return m_imp->get_uvar(n);
}
void environment::add_definition(name const & n, expr const & t, expr const & v, bool opaque) {
m_imp->check_no_children();
m_imp->check_name(n);
infer_universe(t, *this);
expr v_t = infer_type(v, *this);
if (!is_convertible(t, v_t, *this)) {
std::ostringstream buffer;
buffer << "type mismatch when defining '" << n << "'\n"
<< "expected type:\n" << t << "\n"
<< "given type:\n" << v_t;
throw exception(buffer.str());
}
m_imp->add_definition(n, t, v, opaque);
}
void environment::add_definition(name const & n, expr const & v, bool opaque) {
m_imp->check_no_children();
m_imp->check_name(n);
expr v_t = infer_type(v, *this);
m_imp->add_definition(n, v_t, v, opaque);
}
void environment::add_fact(name const & n, expr const & t) {
m_imp->check_no_children();
m_imp->check_name(n);
infer_universe(t, *this);
m_imp->add_fact(n, t);
}
environment::object const & environment::get_object(name const & n) const {
return m_imp->get_object(n);
}
environment::object const * environment::get_object_ptr(name const & n) const {
return m_imp->get_object_ptr(n);
}
}