lean2/src/kernel/environment.cpp

757 lines
25 KiB
C++
Raw Normal View History

/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include <cstdlib>
#include <algorithm>
#include <vector>
2013-10-26 18:07:06 +00:00
#include <tuple>
#include <fstream>
#include <string>
#include <utility>
#include "util/thread.h"
#include "util/safe_arith.h"
#include "util/realpath.h"
#include "util/sstream.h"
#include "util/lean_path.h"
#include "util/flet.h"
#include "kernel/for_each_fn.h"
#include "kernel/find_fn.h"
#include "kernel/kernel_exception.h"
#include "kernel/environment.h"
#include "kernel/threadsafe_environment.h"
#include "kernel/type_checker.h"
#include "kernel/normalizer.h"
#include "kernel/universe_constraints.h"
#include "version.h"
namespace lean {
class set_opaque_command : public neutral_object_cell {
name m_obj_name;
bool m_opaque;
public:
set_opaque_command(name const & n, bool opaque):m_obj_name(n), m_opaque(opaque) {}
virtual ~set_opaque_command() {}
virtual char const * keyword() const { return "set::opaque"; }
virtual void write(serializer & s) const { s << "Opa" << m_obj_name << m_opaque; }
name const & get_obj_name() const { return m_obj_name; }
bool get_flag() const { return m_opaque; }
};
static void read_set_opaque(environment const & env, io_state const &, deserializer & d) {
name n = read_name(d);
bool o = d.read_bool();
env->set_opaque(n, o);
}
static object_cell::register_deserializer_fn set_opaque_ds("Opa", read_set_opaque);
bool is_set_opaque(object const & obj) {
return dynamic_cast<set_opaque_command const *>(obj.cell());
}
name const & get_set_opaque_id(object const & obj) {
lean_assert(is_set_opaque(obj));
return static_cast<set_opaque_command const *>(obj.cell())->get_obj_name();
}
bool get_set_opaque_flag(object const & obj) {
lean_assert(is_set_opaque(obj));
return static_cast<set_opaque_command const *>(obj.cell())->get_flag();
}
class import_command : public neutral_object_cell {
std::string m_mod_name;
public:
import_command(std::string const & n):m_mod_name(n) {}
virtual ~import_command() {}
virtual char const * keyword() const { return "import"; }
virtual void write(serializer & s) const { s << "import" << m_mod_name; }
std::string const & get_module() const { return m_mod_name; }
};
static void read_import(environment const & env, io_state const & ios, deserializer & d) {
std::string n = d.read_string();
env->import(n, ios);
}
static object_cell::register_deserializer_fn import_ds("import", read_import);
class end_import_mark : public neutral_object_cell {
public:
end_import_mark() {}
virtual ~end_import_mark() {}
virtual char const * keyword() const { return "EndImport"; }
virtual void write(serializer &) const {}
};
// For Importing builtin modules
class begin_import_mark : public neutral_object_cell {
public:
begin_import_mark() {}
virtual ~begin_import_mark() {}
virtual char const * keyword() const { return "BeginImport"; }
virtual void write(serializer &) const {}
};
bool is_begin_import(object const & obj) {
return dynamic_cast<import_command const*>(obj.cell());
}
optional<std::string> get_imported_module(object const & obj) {
if (is_begin_import(obj)) {
return optional<std::string>(static_cast<import_command const*>(obj.cell())->get_module());
} else {
return optional<std::string>();
}
}
bool is_begin_builtin_import(object const & obj) {
return dynamic_cast<begin_import_mark const*>(obj.cell());
}
bool is_end_import(object const & obj) {
return dynamic_cast<end_import_mark const*>(obj.cell());
}
static name g_builtin_module("builtin_module");
class extension_factory {
std::vector<environment_cell::mk_extension> m_makers;
mutex m_makers_mutex;
public:
unsigned register_extension(environment_cell::mk_extension mk) {
lock_guard<mutex> lock(m_makers_mutex);
unsigned r = m_makers.size();
m_makers.push_back(mk);
return r;
}
std::unique_ptr<environment_extension> mk(unsigned extid) {
lock_guard<mutex> lock(m_makers_mutex);
return m_makers[extid]();
}
};
static std::unique_ptr<extension_factory> g_extension_factory;
static extension_factory & get_extension_factory() {
if (!g_extension_factory)
g_extension_factory.reset(new extension_factory());
return *g_extension_factory;
}
unsigned environment_cell::register_extension(mk_extension mk) {
return get_extension_factory().register_extension(mk);
}
environment environment_cell::env() const {
lean_assert(!m_this.expired()); // it is not possible to expire since it is a reference to this object
lean_assert(this == m_this.lock().get());
return environment(m_this.lock());
}
environment environment_cell::parent() const {
lean_assert(has_parent());
return environment(m_parent);
}
environment environment_cell::mk_child() const {
return environment(m_this.lock(), true);
}
environment_extension & environment_cell::get_extension_core(unsigned extid) {
if (extid >= m_extensions.size())
m_extensions.resize(extid+1);
if (!m_extensions[extid]) {
std::unique_ptr<environment_extension> ext = get_extension_factory().mk(extid);
ext->m_extid = extid;
ext->m_env = this;
m_extensions[extid].swap(ext);
}
return *(m_extensions[extid].get());
}
environment_extension const & environment_cell::get_extension_core(unsigned extid) const {
return const_cast<environment_cell *>(this)->get_extension_core(extid);
}
unsigned environment_cell::get_max_weight(expr const & e) {
unsigned w = 0;
auto proc = [&](expr const & c, unsigned) {
if (is_constant(c)) {
optional<object> obj = get_object_core(const_name(c));
if (obj)
w = std::max(w, obj->get_weight());
}
return true;
};
for_each_fn<decltype(proc)> visitor(proc);
visitor(e);
return w;
}
/** \brief Throw exception if environment or its ancestors already have an object with the given name. */
void environment_cell::check_name_core(name const & n) {
if (has_parent())
m_parent->check_name_core(n);
if (m_object_dictionary.find(n) != m_object_dictionary.end())
throw already_declared_exception(env(), n);
}
void environment_cell::check_name(name const & n) {
if (has_children())
throw read_only_environment_exception(env());
check_name_core(n);
}
/** \brief Store new named object inside internal data-structures */
void environment_cell::register_named_object(object const & new_obj) {
m_objects.push_back(new_obj);
m_object_dictionary.insert(std::make_pair(new_obj.get_name(), new_obj));
}
/**
\brief Return the object named \c n in the environment or its
ancestors. Return null object if there is no object with the
given name.
*/
optional<object> environment_cell::get_object_core(name const & n) const {
auto it = m_object_dictionary.find(n);
if (it == m_object_dictionary.end()) {
if (has_parent())
return m_parent->get_object_core(n);
else
return none_object();
} else {
return some_object(it->second);
}
}
object environment_cell::get_object(name const & n) const {
optional<object> obj = get_object_core(n);
if (obj) {
return *obj;
} else {
throw unknown_object_exception(env(), n);
}
}
class universes {
public:
std::vector<level> m_uvars;
universe_constraints m_constraints;
};
universes & environment_cell::get_rw_universes() {
if (!m_universes) {
lean_assert(has_parent());
m_universes.reset(new universes(m_parent->get_rw_universes()));
}
return *m_universes;
}
universes const & environment_cell::get_ro_universes() const {
if (m_universes) {
return *m_universes;
} else {
lean_assert(has_parent());
return m_parent->get_ro_universes();
}
}
universe_constraints & environment_cell::get_rw_ucs() {
return get_rw_universes().m_constraints;
}
universe_constraints const & environment_cell::get_ro_ucs() const {
return get_ro_universes().m_constraints;
}
optional<int> environment_cell::get_universe_distance(name const & u1, name const & u2) const {
return get_ro_ucs().get_distance(u1, u2);
}
/** \brief Return true iff l1 >= l2 + k by asserted universe constraints. */
bool environment_cell::is_ge(level const & l1, level const & l2, int k) const {
if (l1 == l2)
return k <= 0;
switch (kind(l2)) {
case level_kind::UVar:
switch (kind(l1)) {
case level_kind::UVar: return get_ro_ucs().is_implied(uvar_name(l1), uvar_name(l2), k);
case level_kind::Lift: return is_ge(lift_of(l1), l2, safe_sub(k, lift_offset(l1)));
case level_kind::Max: return std::any_of(max_begin_levels(l1), max_end_levels(l1), [&](level const & l) { return is_ge(l, l2, k); });
}
case level_kind::Lift: return is_ge(l1, lift_of(l2), safe_add(k, lift_offset(l2)));
case level_kind::Max: return std::all_of(max_begin_levels(l2), max_end_levels(l2), [&](level const & l) { return is_ge(l1, l, k); });
}
lean_unreachable(); // LCOV_EXCL_LINE
}
/** \brief Return true iff l1 >= l2 is implied by asserted universe constraints. */
bool environment_cell::is_ge(level const & l1, level const & l2) const {
return is_ge(l1, l2, 0);
}
/** \brief Add a new universe variable */
level environment_cell::add_uvar_core(name const & n) {
check_name(n);
universes & u = get_rw_universes();
u.m_constraints.add_var(n);
level r(n);
u.m_uvars.push_back(r);
return r;
}
/**
\brief Add all basic constraints implied by n >= l + k
A basic constraint is a constraint of the form u >= v + k
where u and v are universe variables.
*/
void environment_cell::add_constraints(name const & n, level const & l, int k) {
switch (kind(l)) {
case level_kind::UVar: get_rw_ucs().add_constraint(n, uvar_name(l), k); return;
case level_kind::Lift: add_constraints(n, lift_of(l), safe_add(k, lift_offset(l))); return;
case level_kind::Max: std::for_each(max_begin_levels(l), max_end_levels(l), [&](level const & l1) { add_constraints(n, l1, k); }); return;
}
lean_unreachable(); // LCOV_EXCL_LINE
}
/**
\brief Check if n >= l + k is consistent with the existing constraints.
*/
void environment_cell::check_consistency(name const & n, level const & l, int k) const {
switch (kind(l)) {
case level_kind::UVar:
if (!get_ro_ucs().is_consistent(n, uvar_name(l), k))
throw kernel_exception(env(), sstream() << "universe constraint inconsistency: " << n << " >= " << l << " + " << k);
if (get_ro_ucs().overflows(n, uvar_name(l), k))
throw kernel_exception(env(), sstream() << "universe constraint produces an integer overflow: " << n << " >= " << l << " + " << k);
return;
case level_kind::Lift: check_consistency(n, lift_of(l), safe_add(k, lift_offset(l))); return;
case level_kind::Max: std::for_each(max_begin_levels(l), max_end_levels(l), [&](level const & l1) { check_consistency(n, l1, k); }); return;
}
lean_unreachable(); // LCOV_EXCL_LINE
}
/** \brief Add a new universe variable with constraint n >= l */
level environment_cell::add_uvar_cnstr(name const & n, level const & l) {
if (has_children())
throw read_only_environment_exception(env());
level r;
auto const & uvs = get_ro_universes().m_uvars;
auto it = std::find_if(uvs.begin(), uvs.end(), [&](level const & l) { return uvar_name(l) == n; });
check_consistency(n, l, 0);
if (it == uvs.end()) {
r = add_uvar_core(n);
register_named_object(mk_uvar_cnstr(n, l));
} else {
// universe n already exists, we must check consistency of the new constraint.
r = *it;
m_objects.push_back(mk_uvar_cnstr(n, l));
}
add_constraints(n, l, 0);
return r;
}
/**
\brief Return the universe variable with given name. Throw an
exception if the environment and its ancestors do not
contain a universe variable named \c n.
*/
level environment_cell::get_uvar(name const & n) const {
auto const & uvs = get_ro_universes().m_uvars;
auto it = std::find_if(uvs.begin(), uvs.end(), [&](level const & l) { return uvar_name(l) == n; });
if (it == uvs.end())
throw unknown_universe_variable_exception(env(), n);
else
return *it;
}
/**
\brief Initialize the set of universe variables with bottom
*/
void environment_cell::init_uvars() {
m_universes.reset(new universes());
universes & u = get_rw_universes();
level bottom;
u.m_uvars.push_back(bottom);
u.m_constraints.add_var(uvar_name(bottom));
}
/**
The kernel should *not* accept expressions containing cached types.
Reason: Cached types may introduce unsoundness.
For example, in the environment env, the constant x may have type T.
Now suppose we are trying to add a new definition D that contains x,
and x is associated with a cached type T'. The cached type may allow
us to accept a definition that is type incorrect with respect to env.
*/
void environment_cell::check_no_cached_type(expr const & e) {
if (find(e, [](expr const & a) { return is_constant(a) && const_type(a); }))
throw kernel_exception(env(), "expression has a constant with a cached type, this is a bug in one of Lean tactics and/or solvers"); // LCOV_EXCL_LINE
}
/**
\brief Throw an exception if \c t is not a type or type of \c
v is not convertible to \c t.
*/
void environment_cell::check_type(name const & n, expr const & t, expr const & v) {
if (m_type_check) {
m_type_checker->check_type(t);
expr v_t = m_type_checker->check(v);
if (!m_type_checker->is_convertible(v_t, t))
throw def_type_mismatch_exception(env(), n, t, v, v_t);
}
}
/** \brief Throw exception if it is not a valid new definition */
void environment_cell::check_new_definition(name const & n, expr const & t, expr const & v) {
check_name(n);
check_type(n, t, v);
}
/** \brief Add a new builtin value to this environment */
void environment_cell::add_builtin(expr const & v) {
if (!is_value(v))
throw invalid_builtin_value_declaration(env(), v); // LCOV_EXCL_LINE
name const & n = to_value(v).get_name();
check_name(n);
name const & u = to_value(v).get_unicode_name();
check_name(u);
register_named_object(mk_builtin(v));
if (u != n) {
auxiliary_section([&]() {
add_definition(u, to_value(v).get_type(), mk_constant(n), false);
});
}
}
/** \brief Add a new builtin value set to this environment */
void environment_cell::add_builtin_set(expr const & r) {
if (!is_value(r))
throw invalid_builtin_value_declaration(env(), r); // LCOV_EXCL_LINE
check_name(to_value(r).get_name());
register_named_object(mk_builtin_set(r));
}
/** \brief Add new definition. */
void environment_cell::add_definition(name const & n, expr const & t, expr const & v, bool opaque) {
check_no_cached_type(t);
check_no_cached_type(v);
check_new_definition(n, t, v);
unsigned w = get_max_weight(v) + 1;
register_named_object(mk_definition(n, t, v, w));
if (opaque)
set_opaque(n, opaque);
}
/**
\brief Add new definition.
The type of the new definition is the type of \c v.
*/
void environment_cell::add_definition(name const & n, expr const & v, bool opaque) {
check_no_cached_type(v);
check_name(n);
expr v_t;
if (m_type_check)
v_t = m_type_checker->check(v);
else
v_t = m_type_checker->infer_type(v);
unsigned w = get_max_weight(v) + 1;
register_named_object(mk_definition(n, v_t, v, w));
if (opaque)
set_opaque(n, opaque);
}
/** \brief Add new theorem. */
void environment_cell::add_theorem(name const & n, expr const & t, expr const & v) {
check_no_cached_type(t);
check_no_cached_type(v);
check_new_definition(n, t, v);
register_named_object(mk_theorem(n, t, v));
}
void environment_cell::set_opaque(name const & n, bool opaque) {
auto obj = find_object(n);
if (!obj || !obj->is_definition())
throw kernel_exception(env(), sstream() << "set_opaque failed, '" << n << "' is not a definition");
obj->set_opaque(opaque);
add_neutral_object(new set_opaque_command(n, opaque));
}
/** \brief Add new axiom. */
void environment_cell::add_axiom(name const & n, expr const & t) {
check_no_cached_type(t);
check_name(n);
if (m_type_check)
m_type_checker->check_type(t);
register_named_object(mk_axiom(n, t));
}
/** \brief Add new variable. */
void environment_cell::add_var(name const & n, expr const & t) {
check_no_cached_type(t);
check_name(n);
if (m_type_check)
m_type_checker->check_type(t);
register_named_object(mk_var_decl(n, t));
}
void environment_cell::add_neutral_object(neutral_object_cell * o) {
m_objects.push_back(mk_neutral(o));
}
unsigned environment_cell::get_num_objects(bool local) const {
if (local || !has_parent()) {
return m_objects.size();
} else {
return m_objects.size() + m_parent->get_num_objects(false);
}
}
object const & environment_cell::get_object(unsigned i, bool local) const {
if (local || !has_parent()) {
return m_objects[i];
} else {
unsigned num_parent_objects = m_parent->get_num_objects(false);
if (i >= num_parent_objects)
return m_objects[i - num_parent_objects];
else
return m_parent->get_object(i, false);
}
}
expr environment_cell::type_check(expr const & e, context const & ctx) const {
return m_type_checker->check(e, ctx);
}
expr environment_cell::infer_type(expr const & e, context const & ctx) const {
return m_type_checker->infer_type(e, ctx);
}
expr environment_cell::normalize(expr const & e, context const & ctx, bool unfold_opaque) const {
return m_type_checker->get_normalizer()(e, ctx, unfold_opaque);
}
bool environment_cell::already_imported(name const & n) const {
if (m_imported_modules.find(n) != m_imported_modules.end())
return true;
else if (has_parent())
return m_parent->already_imported(n);
else
return false;
}
bool environment_cell::mark_imported_core(name n) {
if (already_imported(n)) {
return false;
} else if (has_children()) {
throw read_only_environment_exception(env());
} else {
m_imported_modules.insert(n);
return true;
}
}
bool environment_cell::mark_imported(char const * fname) {
return mark_imported_core(name(realpath(fname)));
}
void environment_cell::auxiliary_section(std::function<void()> fn) {
add_neutral_object(new begin_import_mark());
try {
fn();
add_neutral_object(new end_import_mark());
} catch (...) {
add_neutral_object(new end_import_mark());
throw;
}
}
void environment_cell::import_builtin(char const * id, std::function<void()> fn) {
if (mark_imported_core(name(g_builtin_module, id))) {
auxiliary_section(fn);
}
}
void environment_cell::set_trusted_imported(bool flag) {
m_trust_imported = flag;
}
static char const * g_olean_header = "oleanfile";
static char const * g_olean_end_file = "EndFile";
void environment_cell::export_objects(std::string const & fname) {
std::ofstream out(fname, std::ofstream::binary);
serializer s(out);
s << g_olean_header << LEAN_VERSION_MAJOR << LEAN_VERSION_MINOR;
auto it = begin_objects();
auto end = end_objects();
unsigned num_imports = 0;
for (; it != end; ++it) {
object const & obj = *it;
if (dynamic_cast<import_command const*>(obj.cell())) {
if (num_imports == 0)
obj.write(s);
num_imports++;
} else if (dynamic_cast<end_import_mark const*>(obj.cell())) {
lean_assert(num_imports > 0);
num_imports--;
} else if (dynamic_cast<begin_import_mark const*>(obj.cell())) {
num_imports++;
} else if (num_imports == 0) {
obj.write(s);
}
}
s << g_olean_end_file;
}
bool environment_cell::load_core(std::string const & fname, io_state const & ios, optional<std::string> const & mod_name) {
if (!mod_name || mark_imported_core(fname)) {
std::ifstream in(fname, std::ifstream::binary);
if (!in.good())
throw exception(sstream() << "failed to open file '" << fname << "'");
deserializer d(in);
std::string header;
d >> header;
if (header != g_olean_header)
throw exception(sstream() << "file '" << fname << "' does not seem to be a valid object Lean file");
unsigned major, minor;
// Perhaps we should enforce the right version number
d >> major >> minor;
try {
if (mod_name)
add_neutral_object(new import_command(*mod_name));
while (true) {
std::string k;
d >> k;
if (k == g_olean_end_file) {
if (mod_name)
add_neutral_object(new end_import_mark());
return true;
}
read_object(env(), ios, k, d);
}
} catch (...) {
if (mod_name)
add_neutral_object(new end_import_mark());
throw;
}
} else {
return false;
}
}
bool environment_cell::import(std::string const & fname, io_state const & ios) {
flet<bool> set(m_type_check, !m_trust_imported);
return load_core(realpath(find_file(fname, {".olean"}).c_str()), ios, optional<std::string>(fname));
}
void environment_cell::load(std::string const & fname, io_state const & ios) {
load_core(fname, ios, optional<std::string>());
}
environment_cell::environment_cell():
m_num_children(0) {
m_trust_imported = false;
m_type_check = true;
init_uvars();
}
environment_cell::environment_cell(std::shared_ptr<environment_cell> const & parent):
m_num_children(0),
m_parent(parent) {
m_trust_imported = false;
m_type_check = true;
parent->inc_children();
}
environment_cell::~environment_cell() {
if (m_parent)
m_parent->dec_children();
}
environment::environment():
m_ptr(std::make_shared<environment_cell>()) {
m_ptr->m_this = m_ptr;
m_ptr->m_type_checker.reset(new type_checker(*this));
}
// used when creating a new child environment
environment::environment(std::shared_ptr<environment_cell> const & parent, bool):
m_ptr(std::make_shared<environment_cell>(parent)) {
m_ptr->m_this = m_ptr;
m_ptr->m_type_checker.reset(new type_checker(*this));
}
// used when creating a reference to the parent environment
environment::environment(std::shared_ptr<environment_cell> const & ptr):
m_ptr(ptr) {
}
ro_environment::ro_environment(environment const & env):
m_ptr(env.m_ptr) {
}
ro_environment::ro_environment(weak_ref const & r) {
if (r.expired())
throw exception("weak reference to environment object has expired (i.e., the environment has been deleted)");
m_ptr = r.lock();
}
environment_extension::environment_extension():
m_env(nullptr),
m_extid(0) {
}
environment_extension::~environment_extension() {
}
environment_extension const * environment_extension::get_parent_core() const {
if (m_env == nullptr)
return nullptr;
environment_cell * parent = m_env->m_parent.get();
while (parent) {
if (m_extid < parent->m_extensions.size()) {
environment_extension * ext = parent->m_extensions[m_extid].get();
if (ext)
return ext;
}
parent = parent->m_parent.get();
}
return nullptr;
}
read_only_shared_environment::read_only_shared_environment(ro_environment const & env):
m_env(env),
m_lock(const_cast<environment_cell*>(m_env.m_ptr.get())->m_mutex) {
}
read_only_shared_environment::~read_only_shared_environment() {}
read_write_shared_environment::read_write_shared_environment(environment const & env):
m_env(env),
m_lock(m_env.m_ptr->m_mutex) {
}
read_write_shared_environment::~read_write_shared_environment() {}
static std::unique_ptr<name_map<std::pair<mk_builtin_fn, bool>>> g_available_builtins;
name_map<std::pair<mk_builtin_fn, bool>> & get_available_builtins() {
if (!g_available_builtins)
g_available_builtins.reset(new name_map<std::pair<mk_builtin_fn, bool>>());
return *g_available_builtins;
}
void register_builtin(name const & n, mk_builtin_fn mk, bool is_builtin_set) {
auto & bs = get_available_builtins();
if (bs.find(n) != bs.end())
throw exception("invalid builtin object, system already has a builtin object with the given name"); // LCOV_EXCL_LINE
bs[n] = mk_pair(mk, is_builtin_set);
}
optional<std::pair<expr, bool>> get_builtin(name const & n) {
auto it = get_available_builtins().find(n);
if (it != get_available_builtins().end())
return optional<std::pair<expr, bool>>(it->second.first(), it->second.second);
else
return optional<std::pair<expr, bool>>();
}
}