lean2/library/data/prod.lean

115 lines
4.8 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.prod
Author: Leonardo de Moura, Jeremy Avigad
-/
2014-12-01 04:34:12 +00:00
import logic.eq
2014-10-05 20:38:08 +00:00
open inhabited decidable eq.ops
namespace prod
variables {A B : Type} {a₁ a₂ : A} {b₁ b₂ : B} {u : A × B}
2014-10-05 20:38:08 +00:00
theorem pair_eq : a₁ = a₂ → b₁ = b₂ → (a₁, b₁) = (a₂, b₂) :=
assume H1 H2, H1 ▸ H2 ▸ rfl
2014-10-05 20:38:08 +00:00
protected theorem equal {p₁ p₂ : prod A B} : pr₁ p₁ = pr₁ p₂ → pr₂ p₁ = pr₂ p₂ → p₁ = p₂ :=
destruct p₁ (take a₁ b₁, destruct p₂ (take a₂ b₂ H₁ H₂, pair_eq H₁ H₂))
2014-10-05 20:38:08 +00:00
protected definition is_inhabited [instance] : inhabited A → inhabited B → inhabited (prod A B) :=
take (H₁ : inhabited A) (H₂ : inhabited B),
inhabited.destruct H₁ (λa, inhabited.destruct H₂ (λb, inhabited.mk (pair a b)))
2014-10-05 20:38:08 +00:00
protected definition has_decidable_eq [instance] : decidable_eq A → decidable_eq B → decidable_eq (A × B) :=
take (H₁ : decidable_eq A) (H₂ : decidable_eq B) (u v : A × B),
have H₃ : u = v ↔ (pr₁ u = pr₁ v) ∧ (pr₂ u = pr₂ v), from
iff.intro
(assume H, H ▸ and.intro rfl rfl)
2014-10-05 20:38:08 +00:00
(assume H, and.elim H (assume H₄ H₅, equal H₄ H₅)),
decidable_of_decidable_of_iff _ (iff.symm H₃)
-- ### flip operation
definition flip (a : A × B) : B × A := pair (pr2 a) (pr1 a)
theorem flip_def (a : A × B) : flip a = pair (pr2 a) (pr1 a) := rfl
theorem flip_pair (a : A) (b : B) : flip (pair a b) = pair b a := rfl
theorem flip_pr1 (a : A × B) : pr1 (flip a) = pr2 a := rfl
theorem flip_pr2 (a : A × B) : pr2 (flip a) = pr1 a := rfl
theorem flip_flip (a : A × B) : flip (flip a) = a :=
destruct a (take x y, rfl)
theorem P_flip {P : A → B → Prop} (a : A × B) (H : P (pr1 a) (pr2 a))
: P (pr2 (flip a)) (pr1 (flip a)) :=
(flip_pr1 a)⁻¹ ▸ (flip_pr2 a)⁻¹ ▸ H
theorem flip_inj {a b : A × B} (H : flip a = flip b) : a = b :=
have H2 : flip (flip a) = flip (flip b), from congr_arg flip H,
show a = b, from (flip_flip a) ▸ (flip_flip b) ▸ H2
-- ### coordinatewise unary maps
definition map_pair (f : A → B) (a : A × A) : B × B :=
pair (f (pr1 a)) (f (pr2 a))
theorem map_pair_def (f : A → B) (a : A × A)
: map_pair f a = pair (f (pr1 a)) (f (pr2 a)) :=
rfl
theorem map_pair_pair (f : A → B) (a a' : A)
: map_pair f (pair a a') = pair (f a) (f a') :=
(pr1.mk a a') ▸ (pr2.mk a a') ▸ rfl
theorem map_pair_pr1 (f : A → B) (a : A × A) : pr1 (map_pair f a) = f (pr1 a) :=
!pr1.mk
theorem map_pair_pr2 (f : A → B) (a : A × A) : pr2 (map_pair f a) = f (pr2 a) :=
!pr2.mk
-- ### coordinatewise binary maps
definition map_pair2 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : C × C :=
pair (f (pr1 a) (pr1 b)) (f (pr2 a) (pr2 b))
theorem map_pair2_def {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
map_pair2 f a b = pair (f (pr1 a) (pr1 b)) (f (pr2 a) (pr2 b)) := rfl
theorem map_pair2_pair {A B C : Type} (f : A → B → C) (a a' : A) (b b' : B) :
map_pair2 f (pair a a') (pair b b') = pair (f a b) (f a' b') :=
calc
map_pair2 f (pair a a') (pair b b')
= pair (f (pr1 (pair a a')) b) (f (pr2 (pair a a')) (pr2 (pair b b')))
: {pr1.mk b b'}
... = pair (f (pr1 (pair a a')) b) (f (pr2 (pair a a')) b') : {pr2.mk b b'}
... = pair (f (pr1 (pair a a')) b) (f a' b') : {pr2.mk a a'}
... = pair (f a b) (f a' b') : {pr1.mk a a'}
theorem map_pair2_pr1 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
pr1 (map_pair2 f a b) = f (pr1 a) (pr1 b) := !pr1.mk
theorem map_pair2_pr2 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
pr2 (map_pair2 f a b) = f (pr2 a) (pr2 b) := !pr2.mk
theorem map_pair2_flip {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
flip (map_pair2 f a b) = map_pair2 f (flip a) (flip b) :=
have Hx : pr1 (flip (map_pair2 f a b)) = pr1 (map_pair2 f (flip a) (flip b)), from
calc
pr1 (flip (map_pair2 f a b)) = pr2 (map_pair2 f a b) : flip_pr1 _
... = f (pr2 a) (pr2 b) : map_pair2_pr2 f a b
... = f (pr1 (flip a)) (pr2 b) : {(flip_pr1 a)⁻¹}
... = f (pr1 (flip a)) (pr1 (flip b)) : {(flip_pr1 b)⁻¹}
... = pr1 (map_pair2 f (flip a) (flip b)) : (map_pair2_pr1 f _ _)⁻¹,
have Hy : pr2 (flip (map_pair2 f a b)) = pr2 (map_pair2 f (flip a) (flip b)), from
calc
pr2 (flip (map_pair2 f a b)) = pr1 (map_pair2 f a b) : flip_pr2 _
... = f (pr1 a) (pr1 b) : map_pair2_pr1 f a b
... = f (pr2 (flip a)) (pr1 b) : {flip_pr2 a}
... = f (pr2 (flip a)) (pr2 (flip b)) : {flip_pr2 b}
... = pr2 (map_pair2 f (flip a) (flip b)) : (map_pair2_pr2 f _ _)⁻¹,
pair_eq Hx Hy
end prod