lean2/tests/lean/rs.lean.expected.out

24 lines
1.1 KiB
Text
Raw Normal View History

Set: pp::colors
Set: pp::unicode
Assumed: bracket
Assumed: bracket_eq
not_false : (¬ ⊥) =
not_true : (¬ ) = ⊥
Nat::mul_comm : ∀ a b : , a * b = b * a
Nat::add_assoc : ∀ a b c : , a + b + c = a + (b + c)
Nat::add_comm : ∀ a b : , a + b = b + a
Nat::add_zeror : ∀ a : , a + 0 = a
forall_rem [check] : ∀ (A : (Type U)) (H : inhabited A) (p : Bool), (A → p) ↔ p
eq_id : ∀ (A : (Type U)) (a : A), a = a ↔
exists_rem : ∀ (A : (Type U)) (H : inhabited A) (p : Bool), (∃ Hb : A, p) ↔ p
exists_and_distributel : ∀ (A : (Type U)) (p : Bool) (φ : A → Bool),
(∃ x : A, φ x ∧ p) ↔ (∃ x : A, φ x) ∧ p
exists_or_distribute : ∀ (A : (Type U)) (φ ψ : A → Bool),
(∃ x : A, φ x ψ x) ↔ (∃ x : A, φ x) (∃ x : A, ψ x)
not_and : ∀ a b : Bool, ¬ (a ∧ b) ↔ ¬ a ¬ b
not_neq : ∀ (A : (Type U)) (a b : A), ¬ a ≠ b ↔ a = b
not_true : (¬ ) = ⊥
and_comm : ∀ a b : Bool, a ∧ b ↔ b ∧ a
and_truer : ∀ a : Bool, a ∧ ↔ a
bracket_eq [check] : ∀ a : Bool, bracket a = a